1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
|
/* libs/graphics/sgl/SkGeometry.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkGeometry.h"
#include "Sk64.h"
#include "SkMatrix.h"
/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
May also introduce overflow of fixed when we compute our setup.
*/
#ifdef SK_SCALAR_IS_FIXED
#define DIRECT_EVAL_OF_POLYNOMIALS
#endif
////////////////////////////////////////////////////////////////////////
#ifdef SK_SCALAR_IS_FIXED
static int is_not_monotonic(int a, int b, int c, int d)
{
return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
}
static int is_not_monotonic(int a, int b, int c)
{
return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
}
#else
static int is_not_monotonic(float a, float b, float c)
{
float ab = a - b;
float bc = b - c;
if (ab < 0)
bc = -bc;
return ab == 0 || bc < 0;
}
#endif
////////////////////////////////////////////////////////////////////////
static bool is_unit_interval(SkScalar x)
{
return x > 0 && x < SK_Scalar1;
}
static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
{
SkASSERT(ratio);
if (numer < 0)
{
numer = -numer;
denom = -denom;
}
if (denom == 0 || numer == 0 || numer >= denom)
return 0;
SkScalar r = SkScalarDiv(numer, denom);
SkASSERT(r >= 0 && r < SK_Scalar1);
if (r == 0) // catch underflow if numer <<<< denom
return 0;
*ratio = r;
return 1;
}
/** From Numerical Recipes in C.
Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
x1 = Q / A
x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
{
SkASSERT(roots);
if (A == 0)
return valid_unit_divide(-C, B, roots);
SkScalar* r = roots;
#ifdef SK_SCALAR_IS_FLOAT
float R = B*B - 4*A*C;
if (R < 0) // complex roots
return 0;
R = sk_float_sqrt(R);
#else
Sk64 RR, tmp;
RR.setMul(B,B);
tmp.setMul(A,C);
tmp.shiftLeft(2);
RR.sub(tmp);
if (RR.isNeg())
return 0;
SkFixed R = RR.getSqrt();
#endif
SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
r += valid_unit_divide(Q, A, r);
r += valid_unit_divide(C, Q, r);
if (r - roots == 2)
{
if (roots[0] > roots[1])
SkTSwap<SkScalar>(roots[0], roots[1]);
else if (roots[0] == roots[1]) // nearly-equal?
r -= 1; // skip the double root
}
return (int)(r - roots);
}
#ifdef SK_SCALAR_IS_FIXED
/** Trim A/B/C down so that they are all <= 32bits
and then call SkFindUnitQuadRoots()
*/
static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
{
int na = A.shiftToMake32();
int nb = B.shiftToMake32();
int nc = C.shiftToMake32();
int shift = SkMax32(na, SkMax32(nb, nc));
SkASSERT(shift >= 0);
return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
}
#endif
/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
static SkScalar eval_quad(const SkScalar src[], SkScalar t)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
#ifdef DIRECT_EVAL_OF_POLYNOMIALS
SkScalar C = src[0];
SkScalar A = src[4] - 2 * src[2] + C;
SkScalar B = 2 * (src[2] - C);
return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
#else
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
return SkScalarInterp(ab, bc, t);
#endif
}
static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
{
SkScalar A = src[4] - 2 * src[2] + src[0];
SkScalar B = src[2] - src[0];
return 2 * SkScalarMulAdd(A, t, B);
}
static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
{
SkScalar A = src[4] - 2 * src[2] + src[0];
SkScalar B = src[2] - src[0];
return A + 2 * B;
}
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (pt)
pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
if (tangent)
tangent->set(eval_quad_derivative(&src[0].fX, t),
eval_quad_derivative(&src[0].fY, t));
}
void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
{
SkASSERT(src);
if (pt)
{
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
}
if (tangent)
tangent->set(eval_quad_derivative_at_half(&src[0].fX),
eval_quad_derivative_at_half(&src[0].fY));
}
static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
{
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
dst[0] = src[0];
dst[2] = ab;
dst[4] = SkScalarInterp(ab, bc, t);
dst[6] = bc;
dst[8] = src[4];
}
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
{
SkASSERT(t > 0 && t < SK_Scalar1);
interp_quad_coords(&src[0].fX, &dst[0].fX, t);
interp_quad_coords(&src[0].fY, &dst[0].fY, t);
}
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
{
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
dst[0] = src[0];
dst[1].set(x01, y01);
dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
dst[3].set(x12, y12);
dst[4] = src[2];
}
/** Quad'(t) = At + B, where
A = 2(a - 2b + c)
B = 2(b - a)
Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
{
/* At + B == 0
t = -B / A
*/
#ifdef SK_SCALAR_IS_FIXED
return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
#else
return valid_unit_divide(a - b, a - b - b + c, tValue);
#endif
}
static inline void flatten_double_quad_extrema(SkScalar coords[14])
{
coords[2] = coords[6] = coords[4];
}
static inline void force_quad_monotonic_in_y(SkPoint pts[3])
{
// zap pts[1].fY to the nearest value
SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY);
SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY);
pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY;
}
/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
{
SkASSERT(src);
SkASSERT(dst);
#if 0
static bool once = true;
if (once)
{
once = false;
SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
SkPoint d[6];
int n = SkChopQuadAtYExtrema(s, d);
SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
}
#endif
SkScalar a = src[0].fY;
SkScalar b = src[1].fY;
SkScalar c = src[2].fY;
if (is_not_monotonic(a, b, c))
{
SkScalar tValue;
if (valid_unit_divide(a - b, a - b - b + c, &tValue))
{
SkChopQuadAt(src, dst, tValue);
flatten_double_quad_extrema(&dst[0].fY);
return 1;
}
// if we get here, we need to force dst to be monotonic, even though
// we couldn't compute a unit_divide value (probably underflow).
b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
}
dst[0].set(src[0].fX, a);
dst[1].set(src[1].fX, b);
dst[2].set(src[2].fX, c);
return 0;
}
// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
// F''(t) = 2 (a - 2b + c)
//
// A = 2 (b - a)
// B = 2 (a - 2b + c)
//
// Maximum curvature for a quadratic means solving
// Fx' Fx'' + Fy' Fy'' = 0
//
// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
{
SkScalar Ax = src[1].fX - src[0].fX;
SkScalar Ay = src[1].fY - src[0].fY;
SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
SkScalar t = 0; // 0 means don't chop
#ifdef SK_SCALAR_IS_FLOAT
(void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
#else
// !!! should I use SkFloat here? seems like it
Sk64 numer, denom, tmp;
numer.setMul(Ax, -Bx);
tmp.setMul(Ay, -By);
numer.add(tmp);
if (numer.isPos()) // do nothing if numer <= 0
{
denom.setMul(Bx, Bx);
tmp.setMul(By, By);
denom.add(tmp);
SkASSERT(!denom.isNeg());
if (numer < denom)
{
t = numer.getFixedDiv(denom);
SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!)
if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability
t = 0; // ignore the chop
}
}
#endif
if (t == 0)
{
memcpy(dst, src, 3 * sizeof(SkPoint));
return 1;
}
else
{
SkChopQuadAt(src, dst, t);
return 2;
}
}
////////////////////////////////////////////////////////////////////////////////////////
///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
////////////////////////////////////////////////////////////////////////////////////////
static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
{
coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
coeff[2] = 3*(pt[2] - pt[0]);
coeff[3] = pt[0];
}
void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
{
SkASSERT(pts);
if (cx)
get_cubic_coeff(&pts[0].fX, cx);
if (cy)
get_cubic_coeff(&pts[0].fY, cy);
}
static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (t == 0)
return src[0];
#ifdef DIRECT_EVAL_OF_POLYNOMIALS
SkScalar D = src[0];
SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
SkScalar B = 3*(src[4] - src[2] - src[2] + D);
SkScalar C = 3*(src[2] - D);
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
#else
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
SkScalar cd = SkScalarInterp(src[4], src[6], t);
SkScalar abc = SkScalarInterp(ab, bc, t);
SkScalar bcd = SkScalarInterp(bc, cd, t);
return SkScalarInterp(abc, bcd, t);
#endif
}
/** return At^2 + Bt + C
*/
static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
{
SkASSERT(t >= 0 && t <= SK_Scalar1);
return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
}
static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
{
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
SkScalar C = src[2] - src[0];
return eval_quadratic(A, B, C, t);
}
static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
{
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
SkScalar B = src[4] - 2 * src[2] + src[0];
return SkScalarMulAdd(A, t, B);
}
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
{
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (loc)
loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
if (tangent)
tangent->set(eval_cubic_derivative(&src[0].fX, t),
eval_cubic_derivative(&src[0].fY, t));
if (curvature)
curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
eval_cubic_2ndDerivative(&src[0].fY, t));
}
/** Cubic'(t) = At^2 + Bt + C, where
A = 3(-a + 3(b - c) + d)
B = 6(a - 2b + c)
C = 3(b - a)
Solve for t, keeping only those that fit betwee 0 < t < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
{
#ifdef SK_SCALAR_IS_FIXED
if (!is_not_monotonic(a, b, c, d))
return 0;
#endif
// we divide A,B,C by 3 to simplify
SkScalar A = d - a + 3*(b - c);
SkScalar B = 2*(a - b - b + c);
SkScalar C = b - a;
return SkFindUnitQuadRoots(A, B, C, tValues);
}
static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
{
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
SkScalar cd = SkScalarInterp(src[4], src[6], t);
SkScalar abc = SkScalarInterp(ab, bc, t);
SkScalar bcd = SkScalarInterp(bc, cd, t);
SkScalar abcd = SkScalarInterp(abc, bcd, t);
dst[0] = src[0];
dst[2] = ab;
dst[4] = abc;
dst[6] = abcd;
dst[8] = bcd;
dst[10] = cd;
dst[12] = src[6];
}
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
{
SkASSERT(t > 0 && t < SK_Scalar1);
interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
}
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
{
#ifdef SK_DEBUG
{
for (int i = 0; i < roots - 1; i++)
{
SkASSERT(is_unit_interval(tValues[i]));
SkASSERT(is_unit_interval(tValues[i+1]));
SkASSERT(tValues[i] < tValues[i+1]);
}
}
#endif
if (dst)
{
if (roots == 0) // nothing to chop
memcpy(dst, src, 4*sizeof(SkPoint));
else
{
SkScalar t = tValues[0];
SkPoint tmp[4];
for (int i = 0; i < roots; i++)
{
SkChopCubicAt(src, dst, t);
if (i == roots - 1)
break;
SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValues[i], SK_Scalar1 - tValues[i], &t);
SkASSERT(valid);
dst += 3;
memcpy(tmp, dst, 4 * sizeof(SkPoint));
src = tmp;
}
}
}
}
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
{
SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
SkScalar x012 = SkScalarAve(x01, x12);
SkScalar y012 = SkScalarAve(y01, y12);
SkScalar x123 = SkScalarAve(x12, x23);
SkScalar y123 = SkScalarAve(y12, y23);
dst[0] = src[0];
dst[1].set(x01, y01);
dst[2].set(x012, y012);
dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
dst[4].set(x123, y123);
dst[5].set(x23, y23);
dst[6] = src[3];
}
static void flatten_double_cubic_extrema(SkScalar coords[14])
{
coords[4] = coords[8] = coords[6];
}
/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan converter.
Depending on what is returned, dst[] is treated as follows
0 dst[0..3] is the original cubic
1 dst[0..3] and dst[3..6] are the two new cubics
2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10])
{
SkScalar tValues[2];
int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues);
SkChopCubicAt(src, dst, tValues, roots);
if (dst && roots > 0)
{
// we do some cleanup to ensure our Y extrema are flat
flatten_double_cubic_extrema(&dst[0].fY);
if (roots == 2)
flatten_double_cubic_extrema(&dst[3].fY);
}
return roots;
}
/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
Inflection means that curvature is zero.
Curvature is [F' x F''] / [F'^3]
So we solve F'x X F''y - F'y X F''y == 0
After some canceling of the cubic term, we get
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
(BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
{
SkScalar Ax = src[1].fX - src[0].fX;
SkScalar Ay = src[1].fY - src[0].fY;
SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
int count;
#ifdef SK_SCALAR_IS_FLOAT
count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
#else
Sk64 A, B, C, tmp;
A.setMul(Bx, Cy);
tmp.setMul(By, Cx);
A.sub(tmp);
B.setMul(Ax, Cy);
tmp.setMul(Ay, Cx);
B.sub(tmp);
C.setMul(Ax, By);
tmp.setMul(Ay, Bx);
C.sub(tmp);
count = Sk64FindFixedQuadRoots(A, B, C, tValues);
#endif
return count;
}
int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
{
SkScalar tValues[2];
int count = SkFindCubicInflections(src, tValues);
if (dst)
{
if (count == 0)
memcpy(dst, src, 4 * sizeof(SkPoint));
else
SkChopCubicAt(src, dst, tValues, count);
}
return count + 1;
}
template <typename T> void bubble_sort(T array[], int count)
{
for (int i = count - 1; i > 0; --i)
for (int j = i; j > 0; --j)
if (array[j] < array[j-1])
{
T tmp(array[j]);
array[j] = array[j-1];
array[j-1] = tmp;
}
}
#include "SkFP.h"
// newton refinement
#if 0
static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
{
// x1 = x0 - f(t) / f'(t)
SkFP T = SkScalarToFloat(root);
SkFP N, D;
// f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
D = SkFPAdd(D, coeff[2]);
if (D == 0)
return root;
// f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
N = SkFPAdd(N, SkFPMul(T, coeff[2]));
N = SkFPAdd(N, coeff[3]);
if (N)
{
SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
if (delta)
root -= delta;
}
return root;
}
#endif
#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
#pragma warning ( disable : 4702 )
#endif
/* Solve coeff(t) == 0, returning the number of roots that
lie withing 0 < t < 1.
coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
*/
static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
{
#ifndef SK_SCALAR_IS_FLOAT
return 0; // this is not yet implemented for software float
#endif
if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic
{
return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
}
SkFP a, b, c, Q, R;
{
SkASSERT(coeff[0] != 0);
SkFP inva = SkFPInvert(coeff[0]);
a = SkFPMul(coeff[1], inva);
b = SkFPMul(coeff[2], inva);
c = SkFPMul(coeff[3], inva);
}
Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
// R = (2*a*a*a - 9*a*b + 27*c) / 54;
R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
R = SkFPAdd(R, SkFPMulInt(c, 27));
R = SkFPDivInt(R, 54);
SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
SkFP adiv3 = SkFPDivInt(a, 3);
SkScalar* roots = tValues;
SkScalar r;
if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots
{
#ifdef SK_SCALAR_IS_FLOAT
float theta = sk_float_acos(R / sk_float_sqrt(Q3));
float neg2RootQ = -2 * sk_float_sqrt(Q);
r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
if (is_unit_interval(r))
*roots++ = r;
// now sort the roots
bubble_sort(tValues, (int)(roots - tValues));
#endif
}
else // we have 1 real root
{
SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
A = SkFPCubeRoot(A);
if (SkFPGT(R, 0))
A = SkFPNeg(A);
if (A != 0)
A = SkFPAdd(A, SkFPDiv(Q, A));
r = SkFPToScalar(SkFPSub(A, adiv3));
if (is_unit_interval(r))
*roots++ = r;
}
return (int)(roots - tValues);
}
/* Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
{
SkScalar a = src[2] - src[0];
SkScalar b = src[4] - 2 * src[2] + src[0];
SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
SkFP A = SkScalarToFP(a);
SkFP B = SkScalarToFP(b);
SkFP C = SkScalarToFP(c);
coeff[0] = SkFPMul(C, C);
coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
coeff[3] = SkFPMul(A, B);
}
// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
//#define kMinTValueForChopping (SK_Scalar1 / 256)
#define kMinTValueForChopping 0
/* Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
{
SkFP coeffX[4], coeffY[4];
int i;
formulate_F1DotF2(&src[0].fX, coeffX);
formulate_F1DotF2(&src[0].fY, coeffY);
for (i = 0; i < 4; i++)
coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);
SkScalar t[3];
int count = solve_cubic_polynomial(coeffX, t);
int maxCount = 0;
// now remove extrema where the curvature is zero (mins)
// !!!! need a test for this !!!!
for (i = 0; i < count; i++)
{
// if (not_min_curvature())
if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
tValues[maxCount++] = t[i];
}
return maxCount;
}
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
{
SkScalar t_storage[3];
if (tValues == NULL)
tValues = t_storage;
int count = SkFindCubicMaxCurvature(src, tValues);
if (dst)
{
if (count == 0)
memcpy(dst, src, 4 * sizeof(SkPoint));
else
SkChopCubicAt(src, dst, tValues, count);
}
return count + 1;
}
////////////////////////////////////////////////////////////////////////////////
/* Find t value for quadratic [a, b, c] = d.
Return 0 if there is no solution within [0, 1)
*/
static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
{
// At^2 + Bt + C = d
SkScalar A = a - 2 * b + c;
SkScalar B = 2 * (b - a);
SkScalar C = a - d;
SkScalar roots[2];
int count = SkFindUnitQuadRoots(A, B, C, roots);
SkASSERT(count <= 1);
return count == 1 ? roots[0] : 0;
}
/* given a quad-curve and a point (x,y), chop the quad at that point and return
the new quad's offCurve point. Should only return false if the computed pos
is the start of the curve (i.e. root == 0)
*/
static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve)
{
const SkScalar* base;
SkScalar value;
if (SkScalarAbs(x) < SkScalarAbs(y)) {
base = &quad[0].fX;
value = x;
} else {
base = &quad[0].fY;
value = y;
}
// note: this returns 0 if it thinks value is out of range, meaning the
// root might return something outside of [0, 1)
SkScalar t = quad_solve(base[0], base[2], base[4], value);
if (t > 0)
{
SkPoint tmp[5];
SkChopQuadAt(quad, tmp, t);
*offCurve = tmp[1];
return true;
} else {
/* t == 0 means either the value triggered a root outside of [0, 1)
For our purposes, we can ignore the <= 0 roots, but we want to
catch the >= 1 roots (which given our caller, will basically mean
a root of 1, give-or-take numerical instability). If we are in the
>= 1 case, return the existing offCurve point.
The test below checks to see if we are close to the "end" of the
curve (near base[4]). Rather than specifying a tolerance, I just
check to see if value is on to the right/left of the middle point
(depending on the direction/sign of the end points).
*/
if ((base[0] < base[4] && value > base[2]) ||
(base[0] > base[4] && value < base[2])) // should root have been 1
{
*offCurve = quad[1];
return true;
}
}
return false;
}
static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
{ SK_Scalar1, 0 },
{ SK_Scalar1, SK_ScalarTanPIOver8 },
{ SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
{ SK_ScalarTanPIOver8, SK_Scalar1 },
{ 0, SK_Scalar1 },
{ -SK_ScalarTanPIOver8, SK_Scalar1 },
{ -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
{ -SK_Scalar1, SK_ScalarTanPIOver8 },
{ -SK_Scalar1, 0 },
{ -SK_Scalar1, -SK_ScalarTanPIOver8 },
{ -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
{ -SK_ScalarTanPIOver8, -SK_Scalar1 },
{ 0, -SK_Scalar1 },
{ SK_ScalarTanPIOver8, -SK_Scalar1 },
{ SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
{ SK_Scalar1, -SK_ScalarTanPIOver8 },
{ SK_Scalar1, 0 }
};
int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
SkRotationDirection dir, const SkMatrix* userMatrix,
SkPoint quadPoints[])
{
// rotate by x,y so that uStart is (1.0)
SkScalar x = SkPoint::DotProduct(uStart, uStop);
SkScalar y = SkPoint::CrossProduct(uStart, uStop);
SkScalar absX = SkScalarAbs(x);
SkScalar absY = SkScalarAbs(y);
int pointCount;
// check for (effectively) coincident vectors
// this can happen if our angle is nearly 0 or nearly 180 (y == 0)
// ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
if (absY <= SK_ScalarNearlyZero && x > 0 &&
((y >= 0 && kCW_SkRotationDirection == dir) ||
(y <= 0 && kCCW_SkRotationDirection == dir))) {
// just return the start-point
quadPoints[0].set(SK_Scalar1, 0);
pointCount = 1;
} else {
if (dir == kCCW_SkRotationDirection)
y = -y;
// what octant (quadratic curve) is [xy] in?
int oct = 0;
bool sameSign = true;
if (0 == y)
{
oct = 4; // 180
SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
}
else if (0 == x)
{
SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
if (y > 0)
oct = 2; // 90
else
oct = 6; // 270
}
else
{
if (y < 0)
oct += 4;
if ((x < 0) != (y < 0))
{
oct += 2;
sameSign = false;
}
if ((absX < absY) == sameSign)
oct += 1;
}
int wholeCount = oct << 1;
memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
const SkPoint* arc = &gQuadCirclePts[wholeCount];
if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1]))
{
quadPoints[wholeCount + 2].set(x, y);
wholeCount += 2;
}
pointCount = wholeCount + 1;
}
// now handle counter-clockwise and the initial unitStart rotation
SkMatrix matrix;
matrix.setSinCos(uStart.fY, uStart.fX);
if (dir == kCCW_SkRotationDirection) {
matrix.preScale(SK_Scalar1, -SK_Scalar1);
}
if (userMatrix) {
matrix.postConcat(*userMatrix);
}
matrix.mapPoints(quadPoints, pointCount);
return pointCount;
}
|