blob: 681841d253a630a8f761e761fa908e2fc4ea4bd6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkExecutor.h"
#include "SkMakeUnique.h"
#include "SkMutex.h"
#include "SkSemaphore.h"
#include "SkSpinlock.h"
#include "SkTArray.h"
#include "SkThreadUtils.h"
#if defined(SK_BUILD_FOR_WIN32)
#include <windows.h>
static int num_cores() {
SYSTEM_INFO sysinfo;
GetNativeSystemInfo(&sysinfo);
return (int)sysinfo.dwNumberOfProcessors;
}
#else
#include <unistd.h>
static int num_cores() {
return (int)sysconf(_SC_NPROCESSORS_ONLN);
}
#endif
SkExecutor::~SkExecutor() {}
// The default default SkExecutor is an SkTrivialExecutor, which just runs the work right away.
class SkTrivialExecutor final : public SkExecutor {
void add(std::function<void(void)> work) override {
work();
}
};
static SkTrivialExecutor gTrivial;
static SkExecutor* gDefaultExecutor = &gTrivial;
SkExecutor& SkExecutor::GetDefault() {
return *gDefaultExecutor;
}
void SkExecutor::SetDefault(SkExecutor* executor) {
gDefaultExecutor = executor ? executor : &gTrivial;
}
// An SkThreadPool is an executor that runs work on a fixed pool of OS threads.
class SkThreadPool final : public SkExecutor {
public:
explicit SkThreadPool(int threads) {
for (int i = 0; i < threads; i++) {
fThreads.emplace_back(new SkThread(&Loop, this));
fThreads.back()->start();
}
}
~SkThreadPool() override {
// Signal each thread that it's time to shut down.
for (int i = 0; i < fThreads.count(); i++) {
this->add(nullptr);
}
// Wait for each thread to shut down.
for (int i = 0; i < fThreads.count(); i++) {
fThreads[i]->join();
}
}
virtual void add(std::function<void(void)> work) override {
// Add some work to our pile of work to do.
{
SkAutoExclusive lock(fWorkLock);
fWork.emplace_back(std::move(work));
}
// Tell the Loop() threads to pick it up.
fWorkAvailable.signal(1);
}
virtual void borrow() override {
// If there is work waiting, do it.
if (fWorkAvailable.try_wait()) {
SkAssertResult(this->do_work());
}
}
private:
// This method should be called only when fWorkAvailable indicates there's work to do.
bool do_work() {
std::function<void(void)> work;
{
SkAutoExclusive lock(fWorkLock);
SkASSERT(!fWork.empty()); // TODO: if (fWork.empty()) { return true; } ?
work = std::move(fWork.back());
fWork.pop_back();
}
if (!work) {
return false; // This is Loop()'s signal to shut down.
}
work();
return true;
}
static void Loop(void* ctx) {
auto pool = (SkThreadPool*)ctx;
do {
pool->fWorkAvailable.wait();
} while (pool->do_work());
}
// Both SkMutex and SkSpinlock can work here.
using Lock = SkMutex;
SkTArray<std::unique_ptr<SkThread>> fThreads;
SkTArray<std::function<void(void)>> fWork;
Lock fWorkLock;
SkSemaphore fWorkAvailable;
};
std::unique_ptr<SkExecutor> SkExecutor::MakeThreadPool(int threads) {
return skstd::make_unique<SkThreadPool>(threads > 0 ? threads : num_cores());
}
|