1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkEdgeBuilder.h"
#include "SkPath.h"
#include "SkEdge.h"
#include "SkEdgeClipper.h"
#include "SkLineClipper.h"
#include "SkGeometry.h"
template <typename T> static T* typedAllocThrow(SkChunkAlloc& alloc) {
return static_cast<T*>(alloc.allocThrow(sizeof(T)));
}
///////////////////////////////////////////////////////////////////////////////
SkEdgeBuilder::SkEdgeBuilder() : fAlloc(16*1024) {
fEdgeList = nullptr;
}
void SkEdgeBuilder::addLine(const SkPoint pts[]) {
SkEdge* edge = typedAllocThrow<SkEdge>(fAlloc);
if (edge->setLine(pts[0], pts[1], fShiftUp)) {
fList.push(edge);
} else {
// TODO: unallocate edge from storage...
}
}
void SkEdgeBuilder::addQuad(const SkPoint pts[]) {
SkQuadraticEdge* edge = typedAllocThrow<SkQuadraticEdge>(fAlloc);
if (edge->setQuadratic(pts, fShiftUp)) {
fList.push(edge);
} else {
// TODO: unallocate edge from storage...
}
}
void SkEdgeBuilder::addCubic(const SkPoint pts[]) {
SkCubicEdge* edge = typedAllocThrow<SkCubicEdge>(fAlloc);
if (edge->setCubic(pts, fShiftUp)) {
fList.push(edge);
} else {
// TODO: unallocate edge from storage...
}
}
void SkEdgeBuilder::addClipper(SkEdgeClipper* clipper) {
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
this->addLine(pts);
break;
case SkPath::kQuad_Verb:
this->addQuad(pts);
break;
case SkPath::kCubic_Verb:
this->addCubic(pts);
break;
default:
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
static void setShiftedClip(SkRect* dst, const SkIRect& src, int shift) {
dst->set(SkIntToScalar(src.fLeft >> shift),
SkIntToScalar(src.fTop >> shift),
SkIntToScalar(src.fRight >> shift),
SkIntToScalar(src.fBottom >> shift));
}
int SkEdgeBuilder::buildPoly(const SkPath& path, const SkIRect* iclip, int shiftUp,
bool canCullToTheRight) {
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
int maxEdgeCount = path.countPoints();
if (iclip) {
// clipping can turn 1 line into (up to) kMaxClippedLineSegments, since
// we turn portions that are clipped out on the left/right into vertical
// segments.
maxEdgeCount *= SkLineClipper::kMaxClippedLineSegments;
}
size_t maxEdgeSize = maxEdgeCount * sizeof(SkEdge);
size_t maxEdgePtrSize = maxEdgeCount * sizeof(SkEdge*);
// lets store the edges and their pointers in the same block
char* storage = (char*)fAlloc.allocThrow(maxEdgeSize + maxEdgePtrSize);
SkEdge* edge = reinterpret_cast<SkEdge*>(storage);
SkEdge** edgePtr = reinterpret_cast<SkEdge**>(storage + maxEdgeSize);
// Record the beginning of our pointers, so we can return them to the caller
fEdgeList = edgePtr;
if (iclip) {
SkRect clip;
setShiftedClip(&clip, *iclip, shiftUp);
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb: {
SkPoint lines[SkLineClipper::kMaxPoints];
int lineCount = SkLineClipper::ClipLine(pts, clip, lines, canCullToTheRight);
SkASSERT(lineCount <= SkLineClipper::kMaxClippedLineSegments);
for (int i = 0; i < lineCount; i++) {
if (edge->setLine(lines[i], lines[i + 1], shiftUp)) {
*edgePtr++ = edge++;
}
}
break;
}
default:
SkDEBUGFAIL("unexpected verb");
break;
}
}
} else {
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb:
if (edge->setLine(pts[0], pts[1], shiftUp)) {
*edgePtr++ = edge++;
}
break;
default:
SkDEBUGFAIL("unexpected verb");
break;
}
}
}
SkASSERT((char*)edge <= (char*)fEdgeList);
SkASSERT(edgePtr - fEdgeList <= maxEdgeCount);
return SkToInt(edgePtr - fEdgeList);
}
static void handle_quad(SkEdgeBuilder* builder, const SkPoint pts[3]) {
SkPoint monoX[5];
int n = SkChopQuadAtYExtrema(pts, monoX);
for (int i = 0; i <= n; i++) {
builder->addQuad(&monoX[i * 2]);
}
}
int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, int shiftUp,
bool canCullToTheRight) {
fAlloc.reset();
fList.reset();
fShiftUp = shiftUp;
if (SkPath::kLine_SegmentMask == path.getSegmentMasks()) {
return this->buildPoly(path, iclip, shiftUp, canCullToTheRight);
}
SkAutoConicToQuads quadder;
const SkScalar conicTol = SK_Scalar1 / 4;
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
if (iclip) {
SkRect clip;
setShiftedClip(&clip, *iclip, shiftUp);
SkEdgeClipper clipper(canCullToTheRight);
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb: {
SkPoint lines[SkLineClipper::kMaxPoints];
int lineCount = SkLineClipper::ClipLine(pts, clip, lines, canCullToTheRight);
for (int i = 0; i < lineCount; i++) {
this->addLine(&lines[i]);
}
break;
}
case SkPath::kQuad_Verb:
if (clipper.clipQuad(pts, clip)) {
this->addClipper(&clipper);
}
break;
case SkPath::kConic_Verb: {
const SkPoint* quadPts = quadder.computeQuads(
pts, iter.conicWeight(), conicTol);
for (int i = 0; i < quadder.countQuads(); ++i) {
if (clipper.clipQuad(quadPts, clip)) {
this->addClipper(&clipper);
}
quadPts += 2;
}
} break;
case SkPath::kCubic_Verb:
if (clipper.clipCubic(pts, clip)) {
this->addClipper(&clipper);
}
break;
default:
SkDEBUGFAIL("unexpected verb");
break;
}
}
} else {
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
case SkPath::kLine_Verb:
this->addLine(pts);
break;
case SkPath::kQuad_Verb: {
handle_quad(this, pts);
break;
}
case SkPath::kConic_Verb: {
const SkPoint* quadPts = quadder.computeQuads(
pts, iter.conicWeight(), conicTol);
for (int i = 0; i < quadder.countQuads(); ++i) {
handle_quad(this, quadPts);
quadPts += 2;
}
} break;
case SkPath::kCubic_Verb: {
SkPoint monoY[10];
int n = SkChopCubicAtYExtrema(pts, monoY);
for (int i = 0; i <= n; i++) {
this->addCubic(&monoY[i * 3]);
}
break;
}
default:
SkDEBUGFAIL("unexpected verb");
break;
}
}
}
fEdgeList = fList.begin();
return fList.count();
}
|