1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkEdge.h"
#include "SkFDot6.h"
#include "SkMath.h"
/*
In setLine, setQuadratic, setCubic, the first thing we do is to convert
the points into FDot6. This is modulated by the shift parameter, which
will either be 0, or something like 2 for antialiasing.
In the float case, we want to turn the float into .6 by saying pt * 64,
or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
*/
static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
// we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
// away data in value, so just perform a modify up-shift
return value << (16 - 6 - 1);
}
/////////////////////////////////////////////////////////////////////////
int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
int shift) {
SkFDot6 x0, y0, x1, y1;
{
#ifdef SK_RASTERIZE_EVEN_ROUNDING
x0 = SkScalarRoundToFDot6(p0.fX, shift);
y0 = SkScalarRoundToFDot6(p0.fY, shift);
x1 = SkScalarRoundToFDot6(p1.fX, shift);
y1 = SkScalarRoundToFDot6(p1.fY, shift);
#else
float scale = float(1 << (shift + 6));
x0 = int(p0.fX * scale);
y0 = int(p0.fY * scale);
x1 = int(p1.fX * scale);
y1 = int(p1.fY * scale);
#endif
}
int winding = 1;
if (y0 > y1) {
SkTSwap(x0, x1);
SkTSwap(y0, y1);
winding = -1;
}
int top = SkFDot6Round(y0);
int bot = SkFDot6Round(y1);
// are we a zero-height line?
if (top == bot) {
return 0;
}
// are we completely above or below the clip?
if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
return 0;
}
SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
const SkFDot6 dy = SkEdge_Compute_DY(top, y0);
fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
fDX = slope;
fFirstY = top;
fLastY = bot - 1;
fCurveCount = 0;
fWinding = SkToS8(winding);
fCurveShift = 0;
if (clip) {
this->chopLineWithClip(*clip);
}
return 1;
}
// called from a curve subclass
int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
{
SkASSERT(fWinding == 1 || fWinding == -1);
SkASSERT(fCurveCount != 0);
// SkASSERT(fCurveShift != 0);
y0 >>= 10;
y1 >>= 10;
SkASSERT(y0 <= y1);
int top = SkFDot6Round(y0);
int bot = SkFDot6Round(y1);
// SkASSERT(top >= fFirstY);
// are we a zero-height line?
if (top == bot)
return 0;
x0 >>= 10;
x1 >>= 10;
SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
const SkFDot6 dy = SkEdge_Compute_DY(top, y0);
fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
fDX = slope;
fFirstY = top;
fLastY = bot - 1;
return 1;
}
void SkEdge::chopLineWithClip(const SkIRect& clip)
{
int top = fFirstY;
SkASSERT(top < clip.fBottom);
// clip the line to the top
if (top < clip.fTop)
{
SkASSERT(fLastY >= clip.fTop);
fX += fDX * (clip.fTop - top);
fFirstY = clip.fTop;
}
}
///////////////////////////////////////////////////////////////////////////////
/* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
Note that this limits the number of lines we use to approximate a curve.
If we need to increase this, we need to store fCurveCount in something
larger than int8_t.
*/
#define MAX_COEFF_SHIFT 6
static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
{
dx = SkAbs32(dx);
dy = SkAbs32(dy);
// return max + min/2
if (dx > dy)
dx += dy >> 1;
else
dx = dy + (dx >> 1);
return dx;
}
static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
{
// cheap calc of distance from center of p0-p2 to the center of the curve
SkFDot6 dist = cheap_distance(dx, dy);
// shift down dist (it is currently in dot6)
// down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
// this is chosen by heuristic: make it as big as possible (to minimize segments)
// ... but small enough so that our curves still look smooth
dist = (dist + (1 << 4)) >> 5;
// each subdivision (shift value) cuts this dist (error) by 1/4
return (32 - SkCLZ(dist)) >> 1;
}
int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
{
SkFDot6 x0, y0, x1, y1, x2, y2;
{
#ifdef SK_RASTERIZE_EVEN_ROUNDING
x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
#else
float scale = float(1 << (shift + 6));
x0 = int(pts[0].fX * scale);
y0 = int(pts[0].fY * scale);
x1 = int(pts[1].fX * scale);
y1 = int(pts[1].fY * scale);
x2 = int(pts[2].fX * scale);
y2 = int(pts[2].fY * scale);
#endif
}
int winding = 1;
if (y0 > y2)
{
SkTSwap(x0, x2);
SkTSwap(y0, y2);
winding = -1;
}
SkASSERT(y0 <= y1 && y1 <= y2);
int top = SkFDot6Round(y0);
int bot = SkFDot6Round(y2);
// are we a zero-height quad (line)?
if (top == bot)
return 0;
// compute number of steps needed (1 << shift)
{
SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
shift = diff_to_shift(dx, dy);
SkASSERT(shift >= 0);
}
// need at least 1 subdivision for our bias trick
if (shift == 0) {
shift = 1;
} else if (shift > MAX_COEFF_SHIFT) {
shift = MAX_COEFF_SHIFT;
}
fWinding = SkToS8(winding);
//fCubicDShift only set for cubics
fCurveCount = SkToS8(1 << shift);
/*
* We want to reformulate into polynomial form, to make it clear how we
* should forward-difference.
*
* p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
*
* A = p0 - 2p1 + p2
* B = 2(p1 - p0)
* C = p0
*
* Our caller must have constrained our inputs (p0..p2) to all fit into
* 16.16. However, as seen above, we sometimes compute values that can be
* larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
* A and B at 1/2 of their actual value, and just apply a 2x scale during
* application in updateQuadratic(). Hence we store (shift - 1) in
* fCurveShift.
*/
fCurveShift = SkToU8(shift - 1);
SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value
SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value
fQx = SkFDot6ToFixed(x0);
fQDx = B + (A >> shift); // biased by shift
fQDDx = A >> (shift - 1); // biased by shift
A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value
B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value
fQy = SkFDot6ToFixed(y0);
fQDy = B + (A >> shift); // biased by shift
fQDDy = A >> (shift - 1); // biased by shift
fQLastX = SkFDot6ToFixed(x2);
fQLastY = SkFDot6ToFixed(y2);
return this->updateQuadratic();
}
int SkQuadraticEdge::updateQuadratic()
{
int success;
int count = fCurveCount;
SkFixed oldx = fQx;
SkFixed oldy = fQy;
SkFixed dx = fQDx;
SkFixed dy = fQDy;
SkFixed newx, newy;
int shift = fCurveShift;
SkASSERT(count > 0);
do {
if (--count > 0)
{
newx = oldx + (dx >> shift);
dx += fQDDx;
newy = oldy + (dy >> shift);
dy += fQDDy;
}
else // last segment
{
newx = fQLastX;
newy = fQLastY;
}
success = this->updateLine(oldx, oldy, newx, newy);
oldx = newx;
oldy = newy;
} while (count > 0 && !success);
fQx = newx;
fQy = newy;
fQDx = dx;
fQDy = dy;
fCurveCount = SkToS8(count);
return success;
}
/////////////////////////////////////////////////////////////////////////
static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
SkASSERT((x << upShift >> upShift) == x);
return x << upShift;
}
/* f(1/3) = (8a + 12b + 6c + d) / 27
f(2/3) = (a + 6b + 12c + 8d) / 27
f(1/3)-b = (8a - 15b + 6c + d) / 27
f(2/3)-c = (a + 6b - 15c + 8d) / 27
use 16/512 to approximate 1/27
*/
static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
{
SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
}
int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
{
#ifdef SK_RASTERIZE_EVEN_ROUNDING
x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
#else
float scale = float(1 << (shift + 6));
x0 = int(pts[0].fX * scale);
y0 = int(pts[0].fY * scale);
x1 = int(pts[1].fX * scale);
y1 = int(pts[1].fY * scale);
x2 = int(pts[2].fX * scale);
y2 = int(pts[2].fY * scale);
x3 = int(pts[3].fX * scale);
y3 = int(pts[3].fY * scale);
#endif
}
int winding = 1;
if (y0 > y3)
{
SkTSwap(x0, x3);
SkTSwap(x1, x2);
SkTSwap(y0, y3);
SkTSwap(y1, y2);
winding = -1;
}
int top = SkFDot6Round(y0);
int bot = SkFDot6Round(y3);
// are we a zero-height cubic (line)?
if (top == bot)
return 0;
// compute number of steps needed (1 << shift)
{
// Can't use (center of curve - center of baseline), since center-of-curve
// need not be the max delta from the baseline (it could even be coincident)
// so we try just looking at the two off-curve points
SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
// add 1 (by observation)
shift = diff_to_shift(dx, dy) + 1;
}
// need at least 1 subdivision for our bias trick
SkASSERT(shift > 0);
if (shift > MAX_COEFF_SHIFT) {
shift = MAX_COEFF_SHIFT;
}
/* Since our in coming data is initially shifted down by 10 (or 8 in
antialias). That means the most we can shift up is 8. However, we
compute coefficients with a 3*, so the safest upshift is really 6
*/
int upShift = 6; // largest safe value
int downShift = shift + upShift - 10;
if (downShift < 0) {
downShift = 0;
upShift = 10 - shift;
}
fWinding = SkToS8(winding);
fCurveCount = SkToS8(-1 << shift);
fCurveShift = SkToU8(shift);
fCubicDShift = SkToU8(downShift);
SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
fCx = SkFDot6ToFixed(x0);
fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift
fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
fCDDDx = 3*D >> (shift - 1); // biased by 2*shift
B = SkFDot6UpShift(3 * (y1 - y0), upShift);
C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
fCy = SkFDot6ToFixed(y0);
fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift
fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
fCDDDy = 3*D >> (shift - 1); // biased by 2*shift
fCLastX = SkFDot6ToFixed(x3);
fCLastY = SkFDot6ToFixed(y3);
return this->updateCubic();
}
int SkCubicEdge::updateCubic()
{
int success;
int count = fCurveCount;
SkFixed oldx = fCx;
SkFixed oldy = fCy;
SkFixed newx, newy;
const int ddshift = fCurveShift;
const int dshift = fCubicDShift;
SkASSERT(count < 0);
do {
if (++count < 0)
{
newx = oldx + (fCDx >> dshift);
fCDx += fCDDx >> ddshift;
fCDDx += fCDDDx;
newy = oldy + (fCDy >> dshift);
fCDy += fCDDy >> ddshift;
fCDDy += fCDDDy;
}
else // last segment
{
// SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
newx = fCLastX;
newy = fCLastY;
}
// we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
// doesn't always achieve that, so we have to explicitly pin it here.
if (newy < oldy) {
newy = oldy;
}
success = this->updateLine(oldx, oldy, newx, newy);
oldx = newx;
oldy = newy;
} while (count < 0 && !success);
fCx = newx;
fCy = newy;
fCurveCount = SkToS8(count);
return success;
}
|