aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkDeque.cpp
blob: 27f3efcba4bb448daaa8c007a748d15810717970 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkDeque.h"

struct SkDeque::Block {
    Block*  fNext;
    Block*  fPrev;
    char*   fBegin; // start of used section in this chunk
    char*   fEnd;   // end of used section in this chunk
    char*   fStop;  // end of the allocated chunk

    char*       start() { return (char*)(this + 1); }
    const char* start() const { return (const char*)(this + 1); }

    void init(size_t size) {
        fNext   = fPrev = NULL;
        fBegin  = fEnd = NULL;
        fStop   = (char*)this + size;
    }
};

SkDeque::SkDeque(size_t elemSize, int allocCount)
        : fElemSize(elemSize)
        , fInitialStorage(NULL)
        , fCount(0)
        , fAllocCount(allocCount) {
    SkASSERT(allocCount >= 1);
    fFrontBlock = fBackBlock = NULL;
    fFront = fBack = NULL;
}

SkDeque::SkDeque(size_t elemSize, void* storage, size_t storageSize, int allocCount)
        : fElemSize(elemSize)
        , fInitialStorage(storage)
        , fCount(0)
        , fAllocCount(allocCount) {
    SkASSERT(storageSize == 0 || storage != NULL);
    SkASSERT(allocCount >= 1);

    if (storageSize >= sizeof(Block) + elemSize) {
        fFrontBlock = (Block*)storage;
        fFrontBlock->init(storageSize);
    } else {
        fFrontBlock = NULL;
    }
    fBackBlock = fFrontBlock;
    fFront = fBack = NULL;
}

SkDeque::~SkDeque() {
    Block* head = fFrontBlock;
    Block* initialHead = (Block*)fInitialStorage;

    while (head) {
        Block* next = head->fNext;
        if (head != initialHead) {
            this->freeBlock(head);
        }
        head = next;
    }
}

void* SkDeque::push_front() {
    fCount += 1;

    if (NULL == fFrontBlock) {
        fFrontBlock = this->allocateBlock(fAllocCount);
        fBackBlock = fFrontBlock;     // update our linklist
    }

    Block*  first = fFrontBlock;
    char*   begin;

    if (NULL == first->fBegin) {
    INIT_CHUNK:
        first->fEnd = first->fStop;
        begin = first->fStop - fElemSize;
    } else {
        begin = first->fBegin - fElemSize;
        if (begin < first->start()) {    // no more room in this chunk
            // should we alloc more as we accumulate more elements?
            first = this->allocateBlock(fAllocCount);
            first->fNext = fFrontBlock;
            fFrontBlock->fPrev = first;
            fFrontBlock = first;
            goto INIT_CHUNK;
        }
    }

    first->fBegin = begin;

    if (NULL == fFront) {
        SkASSERT(NULL == fBack);
        fFront = fBack = begin;
    } else {
        SkASSERT(fBack);
        fFront = begin;
    }

    return begin;
}

void* SkDeque::push_back() {
    fCount += 1;

    if (NULL == fBackBlock) {
        fBackBlock = this->allocateBlock(fAllocCount);
        fFrontBlock = fBackBlock; // update our linklist
    }

    Block*  last = fBackBlock;
    char*   end;

    if (NULL == last->fBegin) {
    INIT_CHUNK:
        last->fBegin = last->start();
        end = last->fBegin + fElemSize;
    } else {
        end = last->fEnd + fElemSize;
        if (end > last->fStop) {  // no more room in this chunk
            // should we alloc more as we accumulate more elements?
            last = this->allocateBlock(fAllocCount);
            last->fPrev = fBackBlock;
            fBackBlock->fNext = last;
            fBackBlock = last;
            goto INIT_CHUNK;
        }
    }

    last->fEnd = end;
    end -= fElemSize;

    if (NULL == fBack) {
        SkASSERT(NULL == fFront);
        fFront = fBack = end;
    } else {
        SkASSERT(fFront);
        fBack = end;
    }

    return end;
}

void SkDeque::pop_front() {
    SkASSERT(fCount > 0);
    fCount -= 1;

    Block*  first = fFrontBlock;

    SkASSERT(first != NULL);

    if (first->fBegin == NULL) {  // we were marked empty from before
        first = first->fNext;
        first->fPrev = NULL;
        this->freeBlock(fFrontBlock);
        fFrontBlock = first;
        SkASSERT(first != NULL);    // else we popped too far
    }

    char* begin = first->fBegin + fElemSize;
    SkASSERT(begin <= first->fEnd);

    if (begin < fFrontBlock->fEnd) {
        first->fBegin = begin;
        SkASSERT(first->fBegin);
        fFront = first->fBegin;
    } else {
        first->fBegin = first->fEnd = NULL;  // mark as empty
        if (NULL == first->fNext) {
            fFront = fBack = NULL;
        } else {
            SkASSERT(first->fNext->fBegin);
            fFront = first->fNext->fBegin;
        }
    }
}

void SkDeque::pop_back() {
    SkASSERT(fCount > 0);
    fCount -= 1;

    Block* last = fBackBlock;

    SkASSERT(last != NULL);

    if (last->fEnd == NULL) {  // we were marked empty from before
        last = last->fPrev;
        last->fNext = NULL;
        this->freeBlock(fBackBlock);
        fBackBlock = last;
        SkASSERT(last != NULL);  // else we popped too far
    }

    char* end = last->fEnd - fElemSize;
    SkASSERT(end >= last->fBegin);

    if (end > last->fBegin) {
        last->fEnd = end;
        SkASSERT(last->fEnd);
        fBack = last->fEnd - fElemSize;
    } else {
        last->fBegin = last->fEnd = NULL;    // mark as empty
        if (NULL == last->fPrev) {
            fFront = fBack = NULL;
        } else {
            SkASSERT(last->fPrev->fEnd);
            fBack = last->fPrev->fEnd - fElemSize;
        }
    }
}

int SkDeque::numBlocksAllocated() const {
    int numBlocks = 0;

    for (const Block* temp = fFrontBlock; temp; temp = temp->fNext) {
        ++numBlocks;
    }

    return numBlocks;
}

SkDeque::Block* SkDeque::allocateBlock(int allocCount) {
    Block* newBlock = (Block*)sk_malloc_throw(sizeof(Block) + allocCount * fElemSize);
    newBlock->init(sizeof(Block) + allocCount * fElemSize);
    return newBlock;
}

void SkDeque::freeBlock(Block* block) {
    sk_free(block);
}

///////////////////////////////////////////////////////////////////////////////

SkDeque::Iter::Iter() : fCurBlock(NULL), fPos(NULL), fElemSize(0) {}

SkDeque::Iter::Iter(const SkDeque& d, IterStart startLoc) {
    this->reset(d, startLoc);
}

// Due to how reset and next work, next actually returns the current element
// pointed to by fPos and then updates fPos to point to the next one.
void* SkDeque::Iter::next() {
    char* pos = fPos;

    if (pos) {   // if we were valid, try to move to the next setting
        char* next = pos + fElemSize;
        SkASSERT(next <= fCurBlock->fEnd);
        if (next == fCurBlock->fEnd) { // exhausted this chunk, move to next
            do {
                fCurBlock = fCurBlock->fNext;
            } while (fCurBlock != NULL && fCurBlock->fBegin == NULL);
            next = fCurBlock ? fCurBlock->fBegin : NULL;
        }
        fPos = next;
    }
    return pos;
}

// Like next, prev actually returns the current element pointed to by fPos and
// then makes fPos point to the previous element.
void* SkDeque::Iter::prev() {
    char* pos = fPos;

    if (pos) {   // if we were valid, try to move to the prior setting
        char* prev = pos - fElemSize;
        SkASSERT(prev >= fCurBlock->fBegin - fElemSize);
        if (prev < fCurBlock->fBegin) { // exhausted this chunk, move to prior
            do {
                fCurBlock = fCurBlock->fPrev;
            } while (fCurBlock != NULL && fCurBlock->fEnd == NULL);
            prev = fCurBlock ? fCurBlock->fEnd - fElemSize : NULL;
        }
        fPos = prev;
    }
    return pos;
}

// reset works by skipping through the spare blocks at the start (or end)
// of the doubly linked list until a non-empty one is found. The fPos
// member is then set to the first (or last) element in the block. If
// there are no elements in the deque both fCurBlock and fPos will come
// out of this routine NULL.
void SkDeque::Iter::reset(const SkDeque& d, IterStart startLoc) {
    fElemSize = d.fElemSize;

    if (kFront_IterStart == startLoc) {
        // initialize the iterator to start at the front
        fCurBlock = d.fFrontBlock;
        while (fCurBlock && NULL == fCurBlock->fBegin) {
            fCurBlock = fCurBlock->fNext;
        }
        fPos = fCurBlock ? fCurBlock->fBegin : NULL;
    } else {
        // initialize the iterator to start at the back
        fCurBlock = d.fBackBlock;
        while (fCurBlock && NULL == fCurBlock->fEnd) {
            fCurBlock = fCurBlock->fPrev;
        }
        fPos = fCurBlock ? fCurBlock->fEnd - fElemSize : NULL;
    }
}