aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkConvolver.h
blob: 4c4b1fd71100c73cdabbda40a74bd92ef3676dd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef SK_CONVOLVER_H
#define SK_CONVOLVER_H

#include "SkSize.h"
#include "SkTDArray.h"

// avoid confusion with Mac OS X's math library (Carbon)
#if defined(__APPLE__)
#undef FloatToConvolutionFixed
#undef ConvolutionFixedToFloat
#undef FloatToFixed
#undef FixedToFloat
#endif

// Represents a filter in one dimension. Each output pixel has one entry in this
// object for the filter values contributing to it. You build up the filter
// list by calling AddFilter for each output pixel (in order).
//
// We do 2-dimensional convolution by first convolving each row by one
// SkConvolutionFilter1D, then convolving each column by another one.
//
// Entries are stored in ConvolutionFixed point, shifted left by kShiftBits.
class SkConvolutionFilter1D {
public:
    typedef short ConvolutionFixed;

    // The number of bits that ConvolutionFixed point values are shifted by.
    enum { kShiftBits = 14 };

    SK_API SkConvolutionFilter1D();
    SK_API ~SkConvolutionFilter1D();

    // Convert between floating point and our ConvolutionFixed point representation.
    static ConvolutionFixed FloatToFixed(float f) {
        return static_cast<ConvolutionFixed>(f * (1 << kShiftBits));
    }
    static unsigned char FixedToChar(ConvolutionFixed x) {
        return static_cast<unsigned char>(x >> kShiftBits);
    }
    static float FixedToFloat(ConvolutionFixed x) {
        // The cast relies on ConvolutionFixed being a short, implying that on
        // the platforms we care about all (16) bits will fit into
        // the mantissa of a (32-bit) float.
        static_assert(sizeof(ConvolutionFixed) == 2, "ConvolutionFixed_type_should_fit_in_float_mantissa");
        float raw = static_cast<float>(x);
        return ldexpf(raw, -kShiftBits);
    }

    // Returns the maximum pixel span of a filter.
    int maxFilter() const { return fMaxFilter; }

    // Returns the number of filters in this filter. This is the dimension of the
    // output image.
    int numValues() const { return static_cast<int>(fFilters.count()); }

    void reserveAdditional(int filterCount, int filterValueCount) {
        fFilters.setReserve(fFilters.count() + filterCount);
        fFilterValues.setReserve(fFilterValues.count() + filterValueCount);
    }

    // Appends the given list of scaling values for generating a given output
    // pixel. |filterOffset| is the distance from the edge of the image to where
    // the scaling factors start. The scaling factors apply to the source pixels
    // starting from this position, and going for the next |filterLength| pixels.
    //
    // You will probably want to make sure your input is normalized (that is,
    // all entries in |filterValuesg| sub to one) to prevent affecting the overall
    // brighness of the image.
    //
    // The filterLength must be > 0.
    void AddFilter(int filterOffset,
                   const ConvolutionFixed* filterValues,
                   int filterLength);

    // Retrieves a filter for the given |valueOffset|, a position in the output
    // image in the direction we're convolving. The offset and length of the
    // filter values are put into the corresponding out arguments (see AddFilter
    // above for what these mean), and a pointer to the first scaling factor is
    // returned. There will be |filterLength| values in this array.
    inline const ConvolutionFixed* FilterForValue(int valueOffset,
                                       int* filterOffset,
                                       int* filterLength) const {
        const FilterInstance& filter = fFilters[valueOffset];
        *filterOffset = filter.fOffset;
        *filterLength = filter.fTrimmedLength;
        if (filter.fTrimmedLength == 0) {
            return nullptr;
        }
        return &fFilterValues[filter.fDataLocation];
    }

  // Retrieves the filter for the offset 0, presumed to be the one and only.
  // The offset and length of the filter values are put into the corresponding
  // out arguments (see AddFilter). Note that |filterLegth| and
  // |specifiedFilterLength| may be different if leading/trailing zeros of the
  // original floating point form were clipped.
  // There will be |filterLength| values in the return array.
  // Returns nullptr if the filter is 0-length (for instance when all floating
  // point values passed to AddFilter were clipped to 0).
    SK_API const ConvolutionFixed* GetSingleFilter(int* specifiedFilterLength,
        int* filterOffset,
        int* filterLength) const;

    // Add another value to the fFilterValues array -- useful for
    // SIMD padding which happens outside of this class.

    void addFilterValue( ConvolutionFixed val ) {
        fFilterValues.push( val );
    }
private:
    struct FilterInstance {
        // Offset within filterValues for this instance of the filter.
        int fDataLocation;

        // Distance from the left of the filter to the center. IN PIXELS
        int fOffset;

        // Number of values in this filter instance.
        int fTrimmedLength;

        // Filter length as specified. Note that this may be different from
        // 'trimmed_length' if leading/trailing zeros of the original floating
        // point form were clipped differently on each tail.
        int fLength;
    };

    // Stores the information for each filter added to this class.
    SkTDArray<FilterInstance> fFilters;

    // We store all the filter values in this flat list, indexed by
    // |FilterInstance.data_location| to avoid the mallocs required for storing
    // each one separately.
    SkTDArray<ConvolutionFixed> fFilterValues;

    // The maximum size of any filter we've added.
    int fMaxFilter;
};

// Does a two-dimensional convolution on the given source image.
//
// It is assumed the source pixel offsets referenced in the input filters
// reference only valid pixels, so the source image size is not required. Each
// row of the source image starts |sourceByteRowStride| after the previous
// one (this allows you to have rows with some padding at the end).
//
// The result will be put into the given output buffer. The destination image
// size will be xfilter.numValues() * yfilter.numValues() pixels. It will be
// in rows of exactly xfilter.numValues() * 4 bytes.
//
// |sourceHasAlpha| is a hint that allows us to avoid doing computations on
// the alpha channel if the image is opaque. If you don't know, set this to
// true and it will work properly, but setting this to false will be a few
// percent faster if you know the image is opaque.
//
// The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order
// (this is ARGB when loaded into 32-bit words on a little-endian machine).
/**
 *  Returns false if it was unable to perform the convolution/rescale. in which case the output
 *  buffer is assumed to be undefined.
 */
SK_API bool BGRAConvolve2D(const unsigned char* sourceData,
    int sourceByteRowStride,
    bool sourceHasAlpha,
    const SkConvolutionFilter1D& xfilter,
    const SkConvolutionFilter1D& yfilter,
    int outputByteRowStride,
    unsigned char* output);

#endif  // SK_CONVOLVER_H