1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
|
/*
* Copyright 2009 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
////////////////////////////////////////////////////////////////////////////////
// This is an implementation of the triangulation algorithm described by Alain
// Fournier and Delfin Montuno, in "Triangulating Simple Polygons and Equivalent
// Problems", in the ACM Transactions on Graphics, vol. 3, no. 2, April 1984,
// pp. 153-174.
//
// No new vertices are created in the triangulation: triangles are constructed
// only from the points in the original polygon, so there is no possibility for
// cracks to develop from finite precision arithmetic.
////////////////////////////////////////////////////////////////////////////////
// TODO:
// - RemoveDegenerateTrapezoids() was added to make the code robust, but it
// unfortunately introduces T-vertices. Make it robust without T-vertices.
// - It should be easy enough to detect whether the outer contour is right- or
// left-handed by looking at the top vertex, which is available in the
// pre-sort during trapezoidization. Use this information in angleIsConvex()
// to allowed either handedness outer contour. In either case, though, holes
// need to have the opposite orientation.
// - SkTHeapSort was broken, so I wrote a bubble sort so that I could make other
// things work. Use SkQSort() instead.
// - The ActiveTrapezoid array does a linear search which is O(n) inefficient.
// Use SkSearch to implement O(log n) binary search and insertion sort.
// - There is no need to use SkTDArray for everything. Use SkAutoTMalloc for
// everything else.
#include "SkTDArray.h"
#include "SkGeometry.h"
#include "SkTSort.h"
// This is used to prevent runaway code bugs, and can probably be removed after
// the code has been proven robust.
#define kMaxCount 1000
#define DEBUG
#ifdef DEBUG
//------------------------------------------------------------------------------
// Debugging support
//------------------------------------------------------------------------------
#include <cstdio>
#include <stdarg.h>
static int gDebugLevel = 0; // This enables debug reporting.
static void DebugPrintf(const char *format, ...) {
if (gDebugLevel > 0) {
va_list ap;
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
}
}
static void FailureMessage(const char *format, ...) {
if (1) {
printf("FAILURE: ");
va_list ap;
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
}
}
#else // !DEBUG
inline void DebugPrintf(const char *format, ...) {}
inline void FailureMessage(const char *format, ...) {}
#endif // DEBUG
// Forward declaration.
class Vertex;
//------------------------------------------------------------------------------
// The Trapezoid (actually, up to two of them) is embedded into a Vertex, whose
// point() provides the top of the Trapezoid, whereas the bottom, and the left
// and right edges, are stored in the Trapezoid. The edges are represented by
// their tail point; the head is the successive point modulo the number of
// points in the polygon. Only the Y coordinate of the top and bottom are
// relevant.
//------------------------------------------------------------------------------
class Trapezoid {
public:
const Vertex* left() const { return fLeft; }
const Vertex* right() const { return fRight; }
const Vertex* bottom() const { return fBottom; }
Vertex* left() { return fLeft; }
Vertex* right() { return fRight; }
Vertex* bottom() { return fBottom; }
void setLeft(Vertex *left) { fLeft = left; }
void setRight(Vertex *right) { fRight = right; }
void setBottom(Vertex *bottom) { fBottom = bottom; }
void nullify() { setBottom(NULL); }
bool operator<(Trapezoid &t1) { return compare(t1) < 0; }
bool operator>(Trapezoid &t1) { return compare(t1) > 0; }
private:
Vertex *fLeft, *fRight, *fBottom;
// These return a number that is less than, equal to, or greater than zero
// depending on whether the trapezoid or point is to the left, on, or to the
// right.
SkScalar compare(const Trapezoid &t1) const;
SkScalar compare(const SkPoint &p) const;
};
//------------------------------------------------------------------------------
// The ActiveTrapezoids are a sorted list containing the currently active
// trapezoids, i.e. those that have the top, left, and right, but still need the
// bottom. This could use some optimization, to reduce search time from O(n) to
// O(log n).
//------------------------------------------------------------------------------
class ActiveTrapezoids {
public:
ActiveTrapezoids() { fTrapezoids.setCount(0); }
size_t count() const { return fTrapezoids.count(); }
// Select an unused trapezoid from the Vertex vt, initialize it with the
// left and right edges, and insert it into the sorted list.
bool insertNewTrapezoid(Vertex *vt, Vertex *left, Vertex *right);
// Remove the specified Trapezoids from the active list.
void remove(Trapezoid *t);
// Determine whether the given point lies within any active trapezoid, and
// return a pointer to that Trapezoid.
bool withinActiveTrapezoid(const SkPoint &pt, Trapezoid **tp);
// Find an active trapezoid that contains the given edge.
Trapezoid* getTrapezoidWithEdge(const Vertex *edge);
private:
// Insert the specified Trapezoid into the sorted list.
void insert(Trapezoid *t);
// The sorted list of active trapezoids. This is O(n), and would benefit
// a 2-3 tree o achieve O(log n).
SkTDArray<Trapezoid*> fTrapezoids; // Fournier suggests a 2-3 tree instead.
};
//------------------------------------------------------------------------------
// The Vertex is used to communicate information between the various phases of
// triangulation.
//------------------------------------------------------------------------------
class Vertex {
public:
enum VertexType { MONOTONE, CONVEX, CONCAVE };
Trapezoid fTrap0;
Trapezoid fTrap1;
const SkPoint &point() const { return fPoint; }
void setPoint(const SkPoint &point) { fPoint = point; }
// The next and previous vertices around the polygon.
Vertex *next() { return fNext; }
Vertex *prev() { return fPrev; }
const Vertex *next() const { return fNext; }
const Vertex *prev() const { return fPrev; }
void setNext(Vertex *next) { fNext = next; }
void setPrev(Vertex *prev) { fPrev = prev; }
void setDone(bool done) { fDone = done; }
bool done() const { return fDone; }
// Trapezoid accessors return non-null for any complete trapezoids.
void trapezoids(Trapezoid **trap0, Trapezoid **trap1) {
*trap0 = (fTrap0.bottom() != NULL) ? &fTrap0 : NULL;
*trap1 = (fTrap1.bottom() != NULL) ? &fTrap1 : NULL;
}
// Eliminate a trapezoid.
void nullifyTrapezoid() {
if (fTrap1.bottom() != NULL) {
DebugPrintf("Unexpected non-null second trapezoid.\n");
fTrap1.nullify();
return;
}
fTrap0.nullify();
}
// Determine whether the edge specified by this Vertex shares the given top
// and bottom.
bool shareEdge(Vertex *top, Vertex *bottom);
// Determines whether the angle specified by { prev, this, next } is convex.
// Note that collinear is considered to be convex.
bool angleIsConvex();
// Remove this Vertex from the { prev, next } linked list.
void delink() {
Vertex *p = prev(),
*n = next();
p->setNext(n);
n->setPrev(p);
}
// Return a number that is less than, equal to, or greater than zero
// depending on whether the point is to the left, on, or to the right of the
// edge that has this Vertex as a base.
SkScalar compare(const SkPoint &pt) const;
// Classify the vertex, and return its sorted edges.
VertexType classify(Vertex **e0, Vertex **e1);
// This helps determine unimonotonicity.
Vertex *diagonal();
private:
SkPoint fPoint;
Vertex *fNext;
Vertex *fPrev;
bool fDone;
};
bool Vertex::angleIsConvex() {
SkPoint vPrev = prev()->point() - point(),
vNext = next()->point() - point();
// TODO(turk): There might be overflow in fixed-point.
return SkPoint::CrossProduct(vNext, vPrev) >= 0;
}
bool Vertex::shareEdge(Vertex *top, Vertex *bottom) {
return (((this == top) && (this->next() == bottom)) ||
((this == bottom) && (this->next() == top)));
}
SkScalar Vertex::compare(const SkPoint &pt) const {
SkPoint ve = next()->point() - point(),
vp = pt - point();
SkScalar d;
if (ve.fY == 0) {
// Return twice the distance to the center of the horizontal edge.
d = ve.fX + pt.fX - next()->point().fX;
} else {
// Return the distance to the edge, scaled by the edge length.
d = SkPoint::CrossProduct(ve, vp);
if (ve.fY > 0) d = -d;
}
return d;
}
SkScalar Trapezoid::compare(const SkPoint &pt) const {
SkScalar d = left()->compare(pt);
if (d <= 0)
return d; // Left of the left edge.
d = right()->compare(pt);
if (d >= 0)
return d; // Right of the right edge.
return 0; // Somewhere between the left and the right edges.
}
SkScalar Trapezoid::compare(const Trapezoid &t1) const {
#if 1
SkScalar d = left()->compare(t1.left()->point());
if (d == 0)
d = right()->compare(t1.right()->point());
return d;
#else
SkScalar dl = left()->compare( t1.left()->point()),
dr = right()->compare(t1.right()->point());
if (dl < 0 && dr < 0)
return dr;
if (dl > 0 && dr > 0)
return dl;
return 0;
#endif
}
Trapezoid* ActiveTrapezoids::getTrapezoidWithEdge(const Vertex *edge) {
DebugPrintf("Entering getTrapezoidWithEdge(): looking through %d\n",
fTrapezoids.count());
DebugPrintf("trying to find %p: ", edge);
Trapezoid **tp;
for (tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) {
SkASSERT(tp != NULL);
SkASSERT(*tp != NULL);
DebugPrintf("%p and %p, ", (**tp).left(), (**tp).right());
if ((**tp).left() == edge || (**tp).right() == edge) {
DebugPrintf("\ngetTrapezoidWithEdge found the trapezoid\n");
return *tp;
}
}
DebugPrintf("getTrapezoidWithEdge found no trapezoid\n");
return NULL;
}
bool ActiveTrapezoids::insertNewTrapezoid(Vertex *vt,
Vertex *left,
Vertex *right) {
DebugPrintf("Inserting a trapezoid...");
if (vt->fTrap0.left() == NULL && vt->fTrap0.right() == NULL) {
vt->fTrap0.setLeft(left);
vt->fTrap0.setRight(right);
insert(&vt->fTrap0);
} else if (vt->fTrap1.left() == NULL && vt->fTrap1.right() == NULL) {
DebugPrintf("a second one...");
vt->fTrap1.setLeft(left);
vt->fTrap1.setRight(right);
if (vt->fTrap1 < vt->fTrap0) { // Keep trapezoids sorted.
remove(&vt->fTrap0);
Trapezoid t = vt->fTrap0;
vt->fTrap0 = vt->fTrap1;
vt->fTrap1 = t;
insert(&vt->fTrap0);
}
insert(&vt->fTrap1);
} else {
FailureMessage("More than 2 trapezoids requested for a vertex\n");
return false;
}
DebugPrintf(" done. %d incomplete trapezoids\n", fTrapezoids.count());
return true;
}
void ActiveTrapezoids::insert(Trapezoid *t) {
Trapezoid **tp;
for (tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp)
if (**tp > *t)
break;
fTrapezoids.insert(tp - fTrapezoids.begin(), 1, &t);
// SHOULD VERIFY THAT ALL TRAPEZOIDS ARE PROPERLY SORTED
}
void ActiveTrapezoids::remove(Trapezoid *t) {
DebugPrintf("Removing a trapezoid...");
for (Trapezoid **tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) {
if (*tp == t) {
fTrapezoids.remove(tp - fTrapezoids.begin());
DebugPrintf(" done.\n");
return;
}
}
DebugPrintf(" Arghh! Panic!\n");
SkASSERT(t == 0); // Cannot find t in active trapezoid list.
}
bool ActiveTrapezoids::withinActiveTrapezoid(const SkPoint &pt,
Trapezoid **trap) {
DebugPrintf("Entering withinActiveTrapezoid()\n");
// This is where a good search data structure would be helpful.
Trapezoid **t;
for (t = fTrapezoids.begin(); t < fTrapezoids.end(); ++t) {
if ((**t).left()->compare(pt) <= 0) {
// The point is to the left of the left edge of this trapezoid.
DebugPrintf("withinActiveTrapezoid: Before a trapezoid\n");
*trap = *t; // Return the place where a new trapezoid would go.
// We have a bug with the sorting -- look through everything.
continue;
// return false; // Outside all trapezoids, since they are sorted.
}
// The point is to the right of the left edge of this trapezoid.
if ((**t).right()->compare(pt) < 0) {
// The point is to the left of the right edge.
DebugPrintf("withinActiveTrapezoid: Within an Active Trapezoid\n");
*trap = *t;
return true;
}
}
// The point is to the right of all trapezoids.
DebugPrintf("withinActiveTrapezoid: After all trapezoids\n");
*trap = NULL;
return false;
}
Vertex* Vertex::diagonal() {
Vertex *diag = NULL;
if (fTrap0.bottom() != NULL) {
if (!fTrap0.left() ->shareEdge(this, fTrap0.bottom()) &&
!fTrap0.right()->shareEdge(this, fTrap0.bottom())
) {
diag = fTrap0.bottom();
fTrap0 = fTrap1;
fTrap1.nullify();
} else if (fTrap1.bottom() != NULL &&
!fTrap1.left() ->shareEdge(this, fTrap1.bottom()) &&
!fTrap1.right()->shareEdge(this, fTrap1.bottom())
) {
diag = fTrap1.bottom();
fTrap1.nullify();
}
}
return diag;
}
// We use this to sort the edges vertically for a scan-conversion type of
// operation.
class VertexPtr {
public:
Vertex *vt;
};
bool operator<(VertexPtr &v0, VertexPtr &v1) {
// DebugPrintf("< %p %p\n", &v0, &v1);
if (v0.vt->point().fY < v1.vt->point().fY) return true;
if (v0.vt->point().fY > v1.vt->point().fY) return false;
if (v0.vt->point().fX < v1.vt->point().fX) return true;
else return false;
}
bool operator>(VertexPtr &v0, VertexPtr &v1) {
// DebugPrintf("> %p %p\n", &v0, &v1);
if (v0.vt->point().fY > v1.vt->point().fY) return true;
if (v0.vt->point().fY < v1.vt->point().fY) return false;
if (v0.vt->point().fX > v1.vt->point().fX) return true;
else return false;
}
static void SetVertexPoints(size_t numPts, const SkPoint *pt, Vertex *vt) {
for (; numPts-- != 0; ++pt, ++vt)
vt->setPoint(*pt);
}
static void InitializeVertexTopology(size_t numPts, Vertex *v1) {
Vertex *v0 = v1 + numPts - 1, *v_1 = v0 - 1;
for (; numPts-- != 0; v_1 = v0, v0 = v1++) {
v0->setPrev(v_1);
v0->setNext(v1);
}
}
Vertex::VertexType Vertex::classify(Vertex **e0, Vertex **e1) {
VertexType type;
SkPoint vPrev, vNext;
vPrev.fX = prev()->point().fX - point().fX;
vPrev.fY = prev()->point().fY - point().fY;
vNext.fX = next()->point().fX - point().fX;
vNext.fY = next()->point().fY - point().fY;
// This can probably be simplified, but there are enough potential bugs,
// we will leave it expanded until all cases are tested appropriately.
if (vPrev.fY < 0) {
if (vNext.fY > 0) {
// Prev comes from above, Next goes below.
type = MONOTONE;
*e0 = prev();
*e1 = this;
} else if (vNext.fY < 0) {
// The are both above: sort so that e0 is on the left.
type = CONCAVE;
if (SkPoint::CrossProduct(vPrev, vNext) <= 0) {
*e0 = this;
*e1 = prev();
} else {
*e0 = prev();
*e1 = this;
}
} else {
DebugPrintf("### py < 0, ny = 0\n");
if (vNext.fX < 0) {
type = CONCAVE;
*e0 = this; // flat to the left
*e1 = prev(); // concave on the right
} else {
type = CONCAVE;
*e0 = prev(); // concave to the left
*e1 = this; // flat to the right
}
}
} else if (vPrev.fY > 0) {
if (vNext.fY < 0) {
// Next comes from above, Prev goes below.
type = MONOTONE;
*e0 = this;
*e1 = prev();
} else if (vNext.fY > 0) {
// They are both below: sort so that e0 is on the left.
type = CONVEX;
if (SkPoint::CrossProduct(vPrev, vNext) <= 0) {
*e0 = prev();
*e1 = this;
} else {
*e0 = this;
*e1 = prev();
}
} else {
DebugPrintf("### py > 0, ny = 0\n");
if (vNext.fX < 0) {
type = MONOTONE;
*e0 = this; // flat to the left
*e1 = prev(); // convex on the right - try monotone first
} else {
type = MONOTONE;
*e0 = prev(); // convex to the left - try monotone first
*e1 = this; // flat to the right
}
}
} else { // vPrev.fY == 0
if (vNext.fY < 0) {
DebugPrintf("### py = 0, ny < 0\n");
if (vPrev.fX < 0) {
type = CONCAVE;
*e0 = prev(); // flat to the left
*e1 = this; // concave on the right
} else {
type = CONCAVE;
*e0 = this; // concave on the left - defer
*e1 = prev(); // flat to the right
}
} else if (vNext.fY > 0) {
DebugPrintf("### py = 0, ny > 0\n");
if (vPrev.fX < 0) {
type = MONOTONE;
*e0 = prev(); // flat to the left
*e1 = this; // convex on the right - try monotone first
} else {
type = MONOTONE;
*e0 = this; // convex to the left - try monotone first
*e1 = prev(); // flat to the right
}
} else {
DebugPrintf("### py = 0, ny = 0\n");
// First we try concave, then monotone, then convex.
if (vPrev.fX <= vNext.fX) {
type = CONCAVE;
*e0 = prev(); // flat to the left
*e1 = this; // flat to the right
} else {
type = CONCAVE;
*e0 = this; // flat to the left
*e1 = prev(); // flat to the right
}
}
}
return type;
}
#ifdef DEBUG
static const char* GetVertexTypeString(Vertex::VertexType type) {
const char *typeStr = NULL;
switch (type) {
case Vertex::MONOTONE:
typeStr = "MONOTONE";
break;
case Vertex::CONCAVE:
typeStr = "CONCAVE";
break;
case Vertex::CONVEX:
typeStr = "CONVEX";
break;
}
return typeStr;
}
static void PrintVertices(size_t numPts, Vertex *vt) {
DebugPrintf("\nVertices:\n");
for (size_t i = 0; i < numPts; i++) {
Vertex *e0, *e1;
Vertex::VertexType type = vt[i].classify(&e0, &e1);
DebugPrintf("%2d: (%.7g, %.7g), prev(%d), next(%d), "
"type(%s), left(%d), right(%d)",
i, vt[i].point().fX, vt[i].point().fY,
vt[i].prev() - vt, vt[i].next() - vt,
GetVertexTypeString(type), e0 - vt, e1 - vt);
Trapezoid *trap[2];
vt[i].trapezoids(trap, trap+1);
for (int j = 0; j < 2; ++j) {
if (trap[j] != NULL) {
DebugPrintf(", trap(L=%d, R=%d, B=%d)",
trap[j]->left() - vt,
trap[j]->right() - vt,
trap[j]->bottom() - vt);
}
}
DebugPrintf("\n");
}
}
static void PrintVertexPtrs(size_t numPts, VertexPtr *vp, Vertex *vtBase) {
DebugPrintf("\nSorted Vertices:\n");
for (size_t i = 0; i < numPts; i++) {
Vertex *e0, *e1;
Vertex *vt = vp[i].vt;
Vertex::VertexType type = vt->classify(&e0, &e1);
DebugPrintf("%2d: %2d: (%.7g, %.7g), prev(%d), next(%d), "
"type(%s), left(%d), right(%d)",
i, vt - vtBase, vt->point().fX, vt->point().fY,
vt->prev() - vtBase, vt->next() - vtBase,
GetVertexTypeString(type), e0 - vtBase, e1 - vtBase);
Trapezoid *trap[2];
vt->trapezoids(trap, trap+1);
for (int j = 0; j < 2; ++j) {
if (trap[j] != NULL) {
DebugPrintf(", trap(L=%d, R=%d, B=%d)",
trap[j]->left() - vtBase,
trap[j]->right() - vtBase,
trap[j]->bottom() - vtBase);
}
}
DebugPrintf("\n");
}
}
#else // !DEBUG
inline void PrintVertices(size_t numPts, Vertex *vt) {}
inline void PrintVertexPtrs(size_t numPts, VertexPtr *vp, Vertex *vtBase) {}
#endif // !DEBUG
// SkTHeapSort is broken, so we use a bubble sort in the meantime.
template <typename T>
void BubbleSort(T *array, size_t count) {
bool sorted;
size_t count_1 = count - 1;
do {
sorted = true;
for (size_t i = 0; i < count_1; ++i) {
if (array[i + 1] < array[i]) {
T t = array[i];
array[i] = array[i + 1];
array[i + 1] = t;
sorted = false;
}
}
} while (!sorted);
}
// Remove zero-height trapezoids.
static void RemoveDegenerateTrapezoids(size_t numVt, Vertex *vt) {
for (; numVt-- != 0; vt++) {
Trapezoid *traps[2];
vt->trapezoids(traps, traps+1);
if (traps[1] != NULL &&
vt->point().fY >= traps[1]->bottom()->point().fY) {
traps[1]->nullify();
traps[1] = NULL;
}
if (traps[0] != NULL &&
vt->point().fY >= traps[0]->bottom()->point().fY) {
if (traps[1] != NULL) {
*traps[0] = *traps[1];
traps[1]->nullify();
} else {
traps[0]->nullify();
}
}
}
}
// Enhance the polygon with trapezoids.
bool ConvertPointsToVertices(size_t numPts, const SkPoint *pts, Vertex *vta) {
DebugPrintf("ConvertPointsToVertices()\n");
// Clear everything.
DebugPrintf("Zeroing vertices\n");
sk_bzero(vta, numPts * sizeof(*vta));
// Initialize vertices.
DebugPrintf("Initializing vertices\n");
SetVertexPoints(numPts, pts, vta);
InitializeVertexTopology(numPts, vta);
PrintVertices(numPts, vta);
SkTDArray<VertexPtr> vtptr;
vtptr.setCount(numPts);
for (int i = numPts; i-- != 0;)
vtptr[i].vt = vta + i;
PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta);
DebugPrintf("Sorting vertrap ptr array [%d] %p %p\n", vtptr.count(),
&vtptr[0], &vtptr[vtptr.count() - 1]
);
// SkTHeapSort(vtptr.begin(), vtptr.count());
BubbleSort(vtptr.begin(), vtptr.count());
DebugPrintf("Done sorting\n");
PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta);
DebugPrintf("Traversing sorted vertrap ptrs\n");
ActiveTrapezoids incompleteTrapezoids;
for (VertexPtr *vtpp = vtptr.begin(); vtpp < vtptr.end(); ++vtpp) {
DebugPrintf("%d: sorted vertrap %d\n",
vtpp - vtptr.begin(), vtpp->vt - vta);
Vertex *vt = vtpp->vt;
Vertex *e0, *e1;
Trapezoid *t;
switch (vt->classify(&e0, &e1)) {
case Vertex::MONOTONE:
monotone:
DebugPrintf("MONOTONE %d %d\n", e0 - vta, e1 - vta);
// We should find one edge.
t = incompleteTrapezoids.getTrapezoidWithEdge(e0);
if (t == NULL) { // One of the edges is flat.
DebugPrintf("Monotone: cannot find a trapezoid with e0: "
"trying convex\n");
goto convex;
}
t->setBottom(vt); // This trapezoid is now complete.
incompleteTrapezoids.remove(t);
if (e0 == t->left()) // Replace the left edge.
incompleteTrapezoids.insertNewTrapezoid(vt, e1, t->right());
else // Replace the right edge.
incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), e1);
break;
case Vertex::CONVEX: // Start of a new trapezoid.
convex:
// We don't expect to find any edges.
DebugPrintf("CONVEX %d %d\n", e0 - vta, e1 - vta);
if (incompleteTrapezoids.withinActiveTrapezoid(
vt->point(), &t)) {
// Complete trapezoid.
SkASSERT(t != NULL);
t->setBottom(vt);
incompleteTrapezoids.remove(t);
// Introduce two new trapezoids.
incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), e0);
incompleteTrapezoids.insertNewTrapezoid(vt, e1, t->right());
} else {
// Insert a new trapezoid.
incompleteTrapezoids.insertNewTrapezoid(vt, e0, e1);
}
break;
case Vertex::CONCAVE: // End of a trapezoid.
DebugPrintf("CONCAVE %d %d\n", e0 - vta, e1 - vta);
// We should find two edges.
t = incompleteTrapezoids.getTrapezoidWithEdge(e0);
if (t == NULL) {
DebugPrintf("Concave: cannot find a trapezoid with e0: "
" trying monotone\n");
goto monotone;
}
SkASSERT(t != NULL);
if (e0 == t->left() && e1 == t->right()) {
DebugPrintf(
"Concave edges belong to the same trapezoid.\n");
// Edges belong to the same trapezoid.
// Complete trapezoid & transfer it from the active list.
t->setBottom(vt);
incompleteTrapezoids.remove(t);
} else { // Edges belong to different trapezoids
DebugPrintf(
"Concave edges belong to different trapezoids.\n");
// Complete left and right trapezoids.
Trapezoid *s = incompleteTrapezoids.getTrapezoidWithEdge(
e1);
if (s == NULL) {
DebugPrintf(
"Concave: cannot find a trapezoid with e1: "
" trying monotone\n");
goto monotone;
}
t->setBottom(vt);
s->setBottom(vt);
incompleteTrapezoids.remove(t);
incompleteTrapezoids.remove(s);
// Merge the two trapezoids into one below this vertex.
incompleteTrapezoids.insertNewTrapezoid(vt, t->left(),
s->right());
}
break;
}
}
RemoveDegenerateTrapezoids(numPts, vta);
DebugPrintf("Done making trapezoids\n");
PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta);
size_t k = incompleteTrapezoids.count();
if (k > 0) {
FailureMessage("%d incomplete trapezoids\n", k);
return false;
}
return true;
}
inline void appendTriangleAtVertex(const Vertex *v,
SkTDArray<SkPoint> *triangles) {
SkPoint *p = triangles->append(3);
p[0] = v->prev()->point();
p[1] = v->point();
p[2] = v->next()->point();
DebugPrintf(
"Appending triangle: { (%.7g, %.7g), (%.7g, %.7g), (%.7g, %.7g) }\n",
p[0].fX, p[0].fY,
p[1].fX, p[1].fY,
p[2].fX, p[2].fY
);
}
static size_t CountVertices(const Vertex *first, const Vertex *last) {
DebugPrintf("Counting vertices: ");
size_t count = 1;
for (; first != last; first = first->next()) {
++count;
SkASSERT(count <= kMaxCount);
if (count >= kMaxCount) {
FailureMessage("Vertices do not seem to be in a linked chain\n");
break;
}
}
return count;
}
bool operator<(const SkPoint &p0, const SkPoint &p1) {
if (p0.fY < p1.fY) return true;
if (p0.fY > p1.fY) return false;
if (p0.fX < p1.fX) return true;
else return false;
}
static void PrintLinkedVertices(size_t n, Vertex *vertices) {
DebugPrintf("%d vertices:\n", n);
Vertex *v;
for (v = vertices; n-- != 0; v = v->next())
DebugPrintf(" (%.7g, %.7g)\n", v->point().fX, v->point().fY);
if (v != vertices)
FailureMessage("Vertices are not in a linked chain\n");
}
// Triangulate an unimonotone chain.
bool TriangulateMonotone(Vertex *first, Vertex *last,
SkTDArray<SkPoint> *triangles) {
DebugPrintf("TriangulateMonotone()\n");
size_t numVertices = CountVertices(first, last);
if (numVertices == kMaxCount) {
FailureMessage("Way too many vertices: %d:\n", numVertices);
PrintLinkedVertices(numVertices, first);
return false;
}
Vertex *start = first;
// First find the point with the smallest Y.
DebugPrintf("TriangulateMonotone: finding bottom\n");
int count = kMaxCount; // Maximum number of vertices.
for (Vertex *v = first->next(); v != first && count-- > 0; v = v->next())
if (v->point() < start->point())
start = v;
if (count <= 0) {
FailureMessage("TriangulateMonotone() was given disjoint chain\n");
return false; // Something went wrong.
}
// Start at the far end of the long edge.
if (start->prev()->point() < start->next()->point())
start = start->next();
Vertex *current = start->next();
while (numVertices >= 3) {
if (current->angleIsConvex()) {
DebugPrintf("Angle %p is convex\n", current);
// Print the vertices
PrintLinkedVertices(numVertices, start);
appendTriangleAtVertex(current, triangles);
if (triangles->count() > kMaxCount * 3) {
FailureMessage("An extraordinarily large number of triangles "
"were generated\n");
return false;
}
Vertex *save = current->prev();
current->delink();
current = (save == start || save == start->prev()) ? start->next()
: save;
--numVertices;
} else {
if (numVertices == 3) {
FailureMessage("Convexity error in TriangulateMonotone()\n");
appendTriangleAtVertex(current, triangles);
return false;
}
DebugPrintf("Angle %p is concave\n", current);
current = current->next();
}
}
return true;
}
// Split the polygon into sets of unimonotone chains, and eventually call
// TriangulateMonotone() to convert them into triangles.
bool Triangulate(Vertex *first, Vertex *last, SkTDArray<SkPoint> *triangles) {
DebugPrintf("Triangulate()\n");
Vertex *currentVertex = first;
while (!currentVertex->done()) {
currentVertex->setDone(true);
Vertex *bottomVertex = currentVertex->diagonal();
if (bottomVertex != NULL) {
Vertex *saveNext = currentVertex->next();
Vertex *savePrev = bottomVertex->prev();
currentVertex->setNext(bottomVertex);
bottomVertex->setPrev(currentVertex);
currentVertex->nullifyTrapezoid();
bool success = Triangulate(bottomVertex, currentVertex, triangles);
currentVertex->setDone(false);
bottomVertex->setDone(false);
currentVertex->setNext(saveNext);
bottomVertex->setPrev(savePrev);
bottomVertex->setNext(currentVertex);
currentVertex->setPrev(bottomVertex);
return Triangulate(currentVertex, bottomVertex, triangles)
&& success;
} else {
currentVertex = currentVertex->next();
}
}
return TriangulateMonotone(first, last, triangles);
}
bool SkConcaveToTriangles(size_t numPts,
const SkPoint pts[],
SkTDArray<SkPoint> *triangles) {
DebugPrintf("SkConcaveToTriangles()\n");
SkTDArray<Vertex> vertices;
vertices.setCount(numPts);
if (!ConvertPointsToVertices(numPts, pts, vertices.begin()))
return false;
triangles->setReserve(numPts);
triangles->setCount(0);
return Triangulate(vertices.begin(), vertices.end() - 1, triangles);
}
|