aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkColorSpaceXform_A2B.cpp
blob: e54cb278406f2e81559d53c34782598fdc1bb93e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkColorSpaceXform_A2B.h"

#include "SkColorPriv.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXformPriv.h"
#include "SkMakeUnique.h"
#include "SkNx.h"
#include "SkSRGB.h"
#include "SkTypes.h"

#include "SkRasterPipeline_opts.h"

#define AI SK_ALWAYS_INLINE

namespace {

class ApplyParametric {
public:
    ApplyParametric(const SkColorSpaceTransferFn& fn)
        : fFn(fn)
    {}

    float operator()(float x) const {
        float y;
        if (x >= fFn.fD) {
            y = ::powf(fFn.fA * x + fFn.fB, fFn.fG) + fFn.fC;
        } else {
            y = fFn.fE * x + fFn.fF;
        }
        if (y >= 1.f) {
            return 1.f;
        } else if (y >= 0.f) {
            return y;
        }
        return 0.f;
    }

private:
    SkColorSpaceTransferFn fFn;
};

class ApplyTable {
public:
    ApplyTable(const float* table, int size)
        : fTable(table)
        , fSize(size)
    {}

    float operator()(float x) const {
        return interp_lut(x, fTable, fSize);
    }

private:
    const float* fTable;
    int          fSize;
};

}

///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkColorSpaceXform_A2B::onApply(ColorFormat dstFormat, void* dst, ColorFormat srcFormat,
                                    const void* src, int count, SkAlphaType alphaType) const {
    SkRasterPipeline pipeline;
    switch (srcFormat) {
        case kBGRA_8888_ColorFormat:
            pipeline.append(SkRasterPipeline::load_s_8888, &src);
            pipeline.append(SkRasterPipeline::swap_rb);
            break;
        case kRGBA_8888_ColorFormat:
            pipeline.append(SkRasterPipeline::load_s_8888, &src);
            break;
        default:
            SkCSXformPrintf("F16/F32 source color format not supported\n");
            return false;
    }

    pipeline.extend(fElementsPipeline);

    if (kPremul_SkAlphaType == alphaType) {
        pipeline.append(SkRasterPipeline::premul);
    }

    switch (dstFormat) {
        case kBGRA_8888_ColorFormat:
            pipeline.append(SkRasterPipeline::swap_rb);
            pipeline.append(SkRasterPipeline::store_8888, &dst);
            break;
        case kRGBA_8888_ColorFormat:
            pipeline.append(SkRasterPipeline::store_8888, &dst);
            break;
        case kRGBA_F16_ColorFormat:
            if (!fLinearDstGamma) {
                return false;
            }
            pipeline.append(SkRasterPipeline::store_f16, &dst);
            break;
        case kRGBA_F32_ColorFormat:
            if (!fLinearDstGamma) {
                return false;
            }
            pipeline.append(SkRasterPipeline::store_f32, &dst);
            break;
    }

    auto p = pipeline.compile();

    p(0,0, count);

    return true;
}

static inline SkColorSpaceTransferFn value_to_parametric(float exp) {
    return {exp, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f};
}

static inline SkColorSpaceTransferFn gammanamed_to_parametric(SkGammaNamed gammaNamed) {
    switch (gammaNamed) {
        case kLinear_SkGammaNamed:
            return value_to_parametric(1.f);
        case kSRGB_SkGammaNamed:
            return {2.4f, (1.f / 1.055f), (0.055f / 1.055f), 0.f, 0.04045f, (1.f / 12.92f), 0.f};
        case k2Dot2Curve_SkGammaNamed:
            return value_to_parametric(2.2f);
        default:
            SkASSERT(false);
            return {-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f};
    }
}

static inline SkColorSpaceTransferFn gamma_to_parametric(const SkGammas& gammas, int channel) {
    switch (gammas.type(channel)) {
        case SkGammas::Type::kNamed_Type:
            return gammanamed_to_parametric(gammas.data(channel).fNamed);
        case SkGammas::Type::kValue_Type:
            return value_to_parametric(gammas.data(channel).fValue);
        case SkGammas::Type::kParam_Type:
            return gammas.params(channel);
        default:
            SkASSERT(false);
            return {-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f};
    }
}
static inline SkColorSpaceTransferFn invert_parametric(const SkColorSpaceTransferFn& fn) {
    // Original equation is:       y = (ax + b)^g + c   for x >= d
    //                             y = ex + f           otherwise
    //
    // so 1st inverse is:          (y - c)^(1/g) = ax + b
    //                             x = ((y - c)^(1/g) - b) / a
    //
    // which can be re-written as: x = (1/a)(y - c)^(1/g) - b/a
    //                             x = ((1/a)^g)^(1/g) * (y - c)^(1/g) - b/a
    //                             x = ([(1/a)^g]y + [-((1/a)^g)c]) ^ [1/g] + [-b/a]
    //
    // and 2nd inverse is:         x = (y - f) / e
    // which can be re-written as: x = [1/e]y + [-f/e]
    //
    // and now both can be expressed in terms of the same parametric form as the
    // original - parameters are enclosed in square barckets.

    // find inverse for linear segment (if possible)
    float e, f;
    if (0.f == fn.fE) {
        // otherwise assume it should be 0 as it is the lower segment
        // as y = f is a constant function
        e = 0.f;
        f = 0.f;
    } else {
        e = 1.f / fn.fE;
        f = -fn.fF / fn.fE;
    }
    // find inverse for the other segment (if possible)
    float g, a, b, c;
    if (0.f == fn.fA || 0.f == fn.fG) {
        // otherwise assume it should be 1 as it is the top segment
        // as you can't invert the constant functions y = b^g + c, or y = 1 + c
        g = 1.f;
        a = 0.f;
        b = 0.f;
        c = 1.f;
    } else {
        g = 1.f / fn.fG;
        a = powf(1.f / fn.fA, fn.fG);
        b = -a * fn.fC;
        c = -fn.fB / fn.fA;
    }
    const float d = fn.fE * fn.fD + fn.fF;
    return {g, a, b, c, d, e, f};
}

static std::vector<float> build_inverse_table(const float* inTable, int inTableSize) {
    static constexpr int kInvTableSize = 256;
    std::vector<float> outTable(kInvTableSize);
    for (int i = 0; i < kInvTableSize; ++i) {
        const float x = ((float) i) * (1.f / ((float) (kInvTableSize - 1)));
        const float y = inverse_interp_lut(x, inTable, inTableSize);
        outTable[i] = y;
    }
    return outTable;
}

SkColorSpaceXform_A2B::SkColorSpaceXform_A2B(SkColorSpace_A2B* srcSpace,
                                             SkColorSpace_XYZ* dstSpace)
    : fLinearDstGamma(kLinear_SkGammaNamed == dstSpace->gammaNamed()) {
#if (SkCSXformPrintfDefined)
    static const char* debugGammaNamed[4] = {
        "Linear", "SRGB", "2.2", "NonStandard"
    };
    static const char* debugGammas[5] = {
        "None", "Named", "Value", "Table", "Param"
    };
#endif
    // add in all input color space -> PCS xforms
    for (int i = 0; i < srcSpace->count(); ++i) {
        const SkColorSpace_A2B::Element& e = srcSpace->element(i);
        switch (e.type()) {
            case SkColorSpace_A2B::Element::Type::kGammaNamed:
                if (kLinear_SkGammaNamed != e.gammaNamed()) {
                    SkCSXformPrintf("Gamma stage added: %s\n",
                                    debugGammaNamed[(int)e.gammaNamed()]);
                    addGamma(ApplyParametric(gammanamed_to_parametric(e.gammaNamed())),
                             kRGB_Channels);
                }
                break;
            case SkColorSpace_A2B::Element::Type::kGammas: {
                    const SkGammas& gammas = e.gammas();
                    SkCSXformPrintf("Gamma stage added:");
                    for (int channel = 0; channel < 3; ++channel) {
                        SkCSXformPrintf("  %s", debugGammas[(int)gammas.type(channel)]);
                    }
                    SkCSXformPrintf("\n");
                    bool gammaNeedsRef = false;
                    for (int channel = 0; channel < 3; ++channel) {
                        if (SkGammas::Type::kTable_Type == gammas.type(channel)) {
                            addGamma(ApplyTable(gammas.table(channel),
                                                gammas.data(channel).fTable.fSize),
                                                static_cast<Channels>(channel));
                            gammaNeedsRef = true;
                        } else {
                            addGamma(ApplyParametric(gamma_to_parametric(gammas, channel)),
                                     static_cast<Channels>(channel));
                        }
                    }
                    if (gammaNeedsRef) {
                        fGammaRefs.push_back(sk_ref_sp(&gammas));
                    }
                }
                break;
            case SkColorSpace_A2B::Element::Type::kCLUT:
                SkCSXformPrintf("CLUT stage added [%d][%d][%d]\n", e.colorLUT().fGridPoints[0],
                                e.colorLUT().fGridPoints[1], e.colorLUT().fGridPoints[2]);
                fCLUTs.push_back(sk_ref_sp(&e.colorLUT()));
                fElementsPipeline.append(SkRasterPipeline::color_lookup_table,
                                         fCLUTs.back().get());
                break;
            case SkColorSpace_A2B::Element::Type::kMatrix:
                if (!e.matrix().isIdentity()) {
                    SkCSXformPrintf("Matrix stage added\n");
                    addMatrix(e.matrix());
                }
                break;
        }
    }

    // Lab PCS -> XYZ PCS
    if (SkColorSpace_A2B::PCS::kLAB == srcSpace->pcs()) {
        SkCSXformPrintf("Lab -> XYZ element added\n");
        fElementsPipeline.append(SkRasterPipeline::lab_to_xyz);
    }

    // and XYZ PCS -> output color space xforms
    if (!dstSpace->fromXYZD50()->isIdentity()) {
        addMatrix(*dstSpace->fromXYZD50());
    }

    if (kNonStandard_SkGammaNamed != dstSpace->gammaNamed()) {
        if (!fLinearDstGamma) {
            addGamma(ApplyParametric(
                            invert_parametric(gammanamed_to_parametric(dstSpace->gammaNamed()))),
                     kRGB_Channels);
        }
    } else {
        for (int channel = 0; channel < 3; ++channel) {
            const SkGammas& gammas = *dstSpace->gammas();
            if (SkGammas::Type::kTable_Type == gammas.type(channel)) {
                fGammaTables.push_front(build_inverse_table(gammas.table(channel),
                                                            gammas.data(channel).fTable.fSize));
                addGamma(ApplyTable(fGammaTables.front().data(), fGammaTables.front().size()),
                         static_cast<Channels>(channel));
            } else {
                addGamma(ApplyParametric(invert_parametric(gamma_to_parametric(gammas, channel))),
                         static_cast<Channels>(channel));
            }
        }
    }
}

void SkColorSpaceXform_A2B::addGamma(std::function<float(float)> fn, Channels channels) {
    fGammaFunctions.push_front(std::move(fn));
    switch (channels) {
        case kRGB_Channels:
            fElementsPipeline.append(SkRasterPipeline::fn_1_r, &fGammaFunctions.front());
            fElementsPipeline.append(SkRasterPipeline::fn_1_g, &fGammaFunctions.front());
            fElementsPipeline.append(SkRasterPipeline::fn_1_b, &fGammaFunctions.front());
            break;
        case kR_Channels:
            fElementsPipeline.append(SkRasterPipeline::fn_1_r, &fGammaFunctions.front());
            break;
        case kG_Channels:
            fElementsPipeline.append(SkRasterPipeline::fn_1_g, &fGammaFunctions.front());
            break;
        case kB_Channels:
            fElementsPipeline.append(SkRasterPipeline::fn_1_b, &fGammaFunctions.front());
            break;
        default:
            SkASSERT(false);
    }
}

void SkColorSpaceXform_A2B::addMatrix(const SkMatrix44& matrix) {
    fMatrices.push_front(std::vector<float>(12));
    auto& m = fMatrices.front();
    m[ 0] = matrix.get(0, 0);
    m[ 1] = matrix.get(1, 0);
    m[ 2] = matrix.get(2, 0);
    m[ 3] = matrix.get(0, 1);
    m[ 4] = matrix.get(1, 1);
    m[ 5] = matrix.get(2, 1);
    m[ 6] = matrix.get(0, 2);
    m[ 7] = matrix.get(1, 2);
    m[ 8] = matrix.get(2, 2);
    m[ 9] = matrix.get(0, 3);
    m[10] = matrix.get(1, 3);
    m[11] = matrix.get(2, 3);
    SkASSERT(matrix.get(3, 0) == 0.f);
    SkASSERT(matrix.get(3, 1) == 0.f);
    SkASSERT(matrix.get(3, 2) == 0.f);
    SkASSERT(matrix.get(3, 3) == 1.f);
    fElementsPipeline.append(SkRasterPipeline::matrix_3x4, m.data());
    fElementsPipeline.append(SkRasterPipeline::clamp_0);
    fElementsPipeline.append(SkRasterPipeline::clamp_a);
}