aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkColorMatrixFilterRowMajor255.cpp
blob: e17f73a5611add6f058ce334c80d5e631b8f19c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkColorMatrixFilterRowMajor255.h"
#include "SkColorPriv.h"
#include "SkNx.h"
#include "SkPM4fPriv.h"
#include "SkRasterPipeline.h"
#include "SkReadBuffer.h"
#include "SkRefCnt.h"
#include "SkString.h"
#include "SkUnPreMultiply.h"
#include "SkWriteBuffer.h"

static void transpose_and_scale01(float dst[20], const float src[20]) {
    const float* srcR = src + 0;
    const float* srcG = src + 5;
    const float* srcB = src + 10;
    const float* srcA = src + 15;

    for (int i = 0; i < 16; i += 4) {
        dst[i + 0] = *srcR++;
        dst[i + 1] = *srcG++;
        dst[i + 2] = *srcB++;
        dst[i + 3] = *srcA++;
    }
    // Might as well scale these translates down to [0,1] here instead of every filter call.
    dst[16] = *srcR * (1/255.0f);
    dst[17] = *srcG * (1/255.0f);
    dst[18] = *srcB * (1/255.0f);
    dst[19] = *srcA * (1/255.0f);
}

void SkColorMatrixFilterRowMajor255::initState() {
    transpose_and_scale01(fTranspose, fMatrix);

    const float* array = fMatrix;

    // check if we have to munge Alpha
    bool changesAlpha = (array[15] || array[16] || array[17] || (array[18] - 1) || array[19]);
    bool usesAlpha = (array[3] || array[8] || array[13]);

    if (changesAlpha || usesAlpha) {
        fFlags = changesAlpha ? 0 : kAlphaUnchanged_Flag;
    } else {
        fFlags = kAlphaUnchanged_Flag;
    }
}

///////////////////////////////////////////////////////////////////////////////

SkColorMatrixFilterRowMajor255::SkColorMatrixFilterRowMajor255(const SkScalar array[20]) {
    memcpy(fMatrix, array, 20 * sizeof(SkScalar));
    this->initState();
}

uint32_t SkColorMatrixFilterRowMajor255::getFlags() const {
    return this->INHERITED::getFlags() | fFlags;
}

static Sk4f scale_rgb(float scale) {
    static_assert(SkPM4f::A == 3, "Alpha is lane 3");
    return Sk4f(scale, scale, scale, 1);
}

static Sk4f premul(const Sk4f& x) {
    return x * scale_rgb(x[SkPM4f::A]);
}

static Sk4f unpremul(const Sk4f& x) {
    return x * scale_rgb(1 / x[SkPM4f::A]);  // TODO: fast/approx invert?
}

static Sk4f clamp_0_1(const Sk4f& x) {
    return Sk4f::Max(Sk4f::Min(x, Sk4f(1)), Sk4f(0));
}

static SkPMColor round(const Sk4f& x) {
    SkPMColor c;
    SkNx_cast<uint8_t>(x * Sk4f(255) + Sk4f(0.5f)).store(&c);
    return c;
}

template <typename Adaptor, typename T>
void filter_span(const float array[], const T src[], int count, T dst[]) {
    const Sk4f c0 = Sk4f::Load(array + 0);
    const Sk4f c1 = Sk4f::Load(array + 4);
    const Sk4f c2 = Sk4f::Load(array + 8);
    const Sk4f c3 = Sk4f::Load(array + 12);
    const Sk4f c4 = Sk4f::Load(array + 16);

    // todo: we could cache this in the constructor...
    T matrix_translate_pmcolor = Adaptor::From4f(premul(clamp_0_1(c4)));

    for (int i = 0; i < count; i++) {
        Sk4f srcf = Adaptor::To4f(src[i]);
        float srcA = srcf[SkPM4f::A];

        if (0 == srcA) {
            dst[i] = matrix_translate_pmcolor;
            continue;
        }
        if (1 != srcA) {
            srcf = unpremul(srcf);
        }

        Sk4f r4 = srcf[Adaptor::R];
        Sk4f g4 = srcf[Adaptor::G];
        Sk4f b4 = srcf[Adaptor::B];
        Sk4f a4 = srcf[Adaptor::A];
        // apply matrix
        Sk4f dst4 = c0 * r4 + c1 * g4 + c2 * b4 + c3 * a4 + c4;

        dst[i] = Adaptor::From4f(premul(clamp_0_1(dst4)));
    }
}

struct SkPMColorAdaptor {
    enum {
        R = SK_R_INDEX,
        G = SK_G_INDEX,
        B = SK_B_INDEX,
        A = SK_A_INDEX,
    };
    static SkPMColor From4f(const Sk4f& c4) {
        return round(swizzle_rb_if_bgra(c4));
    }
    static Sk4f To4f(SkPMColor c) {
        return Sk4f_fromL32(c);
    }
};
void SkColorMatrixFilterRowMajor255::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const {
    filter_span<SkPMColorAdaptor>(fTranspose, src, count, dst);
}

struct SkPM4fAdaptor {
    enum {
        R = SkPM4f::R,
        G = SkPM4f::G,
        B = SkPM4f::B,
        A = SkPM4f::A,
    };
    static SkPM4f From4f(const Sk4f& c4) {
        return SkPM4f::From4f(c4);
    }
    static Sk4f To4f(const SkPM4f& c) {
        return c.to4f();
    }
};
void SkColorMatrixFilterRowMajor255::filterSpan4f(const SkPM4f src[], int count, SkPM4f dst[]) const {
    filter_span<SkPM4fAdaptor>(fTranspose, src, count, dst);
}

///////////////////////////////////////////////////////////////////////////////

void SkColorMatrixFilterRowMajor255::flatten(SkWriteBuffer& buffer) const {
    SkASSERT(sizeof(fMatrix)/sizeof(SkScalar) == 20);
    buffer.writeScalarArray(fMatrix, 20);
}

sk_sp<SkFlattenable> SkColorMatrixFilterRowMajor255::CreateProc(SkReadBuffer& buffer) {
    SkScalar matrix[20];
    if (buffer.readScalarArray(matrix, 20)) {
        return sk_make_sp<SkColorMatrixFilterRowMajor255>(matrix);
    }
    return nullptr;
}

bool SkColorMatrixFilterRowMajor255::asColorMatrix(SkScalar matrix[20]) const {
    if (matrix) {
        memcpy(matrix, fMatrix, 20 * sizeof(SkScalar));
    }
    return true;
}

///////////////////////////////////////////////////////////////////////////////
//  This code was duplicated from src/effects/SkColorMatrixc.cpp in order to be used in core.
//////

// To detect if we need to apply clamping after applying a matrix, we check if
// any output component might go outside of [0, 255] for any combination of
// input components in [0..255].
// Each output component is an affine transformation of the input component, so
// the minimum and maximum values are for any combination of minimum or maximum
// values of input components (i.e. 0 or 255).
// E.g. if R' = x*R + y*G + z*B + w*A + t
// Then the maximum value will be for R=255 if x>0 or R=0 if x<0, and the
// minimum value will be for R=0 if x>0 or R=255 if x<0.
// Same goes for all components.
static bool component_needs_clamping(const SkScalar row[5]) {
    SkScalar maxValue = row[4] / 255;
    SkScalar minValue = row[4] / 255;
    for (int i = 0; i < 4; ++i) {
        if (row[i] > 0)
            maxValue += row[i];
        else
            minValue += row[i];
    }
    return (maxValue > 1) || (minValue < 0);
}

static bool needs_clamping(const SkScalar matrix[20]) {
    return component_needs_clamping(matrix)
        || component_needs_clamping(matrix+5)
        || component_needs_clamping(matrix+10)
        || component_needs_clamping(matrix+15);
}

static void set_concat(SkScalar result[20], const SkScalar outer[20], const SkScalar inner[20]) {
    int index = 0;
    for (int j = 0; j < 20; j += 5) {
        for (int i = 0; i < 4; i++) {
            result[index++] =   outer[j + 0] * inner[i + 0] +
                                outer[j + 1] * inner[i + 5] +
                                outer[j + 2] * inner[i + 10] +
                                outer[j + 3] * inner[i + 15];
        }
        result[index++] =   outer[j + 0] * inner[4] +
                            outer[j + 1] * inner[9] +
                            outer[j + 2] * inner[14] +
                            outer[j + 3] * inner[19] +
                            outer[j + 4];
    }
}

///////////////////////////////////////////////////////////////////////////////
//  End duplication
//////

bool SkColorMatrixFilterRowMajor255::onAppendStages(SkRasterPipeline* p,
                                                    SkColorSpace* dst,
                                                    SkFallbackAlloc* scratch,
                                                    bool shaderIsOpaque) const {
    bool willStayOpaque = shaderIsOpaque && (fFlags & kAlphaUnchanged_Flag);
    bool needsClamp0 = false,
         needsClamp1 = false;
    for (int i = 0; i < 4; i++) {
        SkScalar min = fTranspose[i+16],
                 max = fTranspose[i+16];
        (fTranspose[i+ 0] < 0 ? min : max) += fTranspose[i+ 0];
        (fTranspose[i+ 4] < 0 ? min : max) += fTranspose[i+ 4];
        (fTranspose[i+ 8] < 0 ? min : max) += fTranspose[i+ 8];
        (fTranspose[i+12] < 0 ? min : max) += fTranspose[i+12];
        needsClamp0 = needsClamp0 || min < 0;
        needsClamp1 = needsClamp1 || max > 1;
    }

    if (!shaderIsOpaque) { p->append(SkRasterPipeline::unpremul); }
    if (           true) { p->append(SkRasterPipeline::matrix_4x5, fTranspose); }
    if (!willStayOpaque) { p->append(SkRasterPipeline::premul); }
    if (    needsClamp0) { p->append(SkRasterPipeline::clamp_0); }
    if (    needsClamp1) { p->append(SkRasterPipeline::clamp_a); }
    return true;
}

sk_sp<SkColorFilter>
SkColorMatrixFilterRowMajor255::makeComposed(sk_sp<SkColorFilter> innerFilter) const {
    SkScalar innerMatrix[20];
    if (innerFilter->asColorMatrix(innerMatrix) && !needs_clamping(innerMatrix)) {
        SkScalar concat[20];
        set_concat(concat, fMatrix, innerMatrix);
        return sk_make_sp<SkColorMatrixFilterRowMajor255>(concat);
    }
    return nullptr;
}

#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"

class ColorMatrixEffect : public GrFragmentProcessor {
public:
    static sk_sp<GrFragmentProcessor> Make(const SkScalar matrix[20]) {
        return sk_sp<GrFragmentProcessor>(new ColorMatrixEffect(matrix));
    }

    const char* name() const override { return "Color Matrix"; }

    GR_DECLARE_FRAGMENT_PROCESSOR_TEST;

    class GLSLProcessor : public GrGLSLFragmentProcessor {
    public:
        // this class always generates the same code.
        static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*) {}

        void emitCode(EmitArgs& args) override {
            GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
            fMatrixHandle = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                       kMat44f_GrSLType, kDefault_GrSLPrecision,
                                                       "ColorMatrix");
            fVectorHandle = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                       kVec4f_GrSLType, kDefault_GrSLPrecision,
                                                       "ColorMatrixVector");

            if (nullptr == args.fInputColor) {
                // could optimize this case, but we aren't for now.
                args.fInputColor = "vec4(1)";
            }
            GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
            // The max() is to guard against 0 / 0 during unpremul when the incoming color is
            // transparent black.
            fragBuilder->codeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n",
                                     args.fInputColor);
            fragBuilder->codeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
                                     args.fOutputColor,
                                     uniformHandler->getUniformCStr(fMatrixHandle),
                                     args.fInputColor,
                                     uniformHandler->getUniformCStr(fVectorHandle));
            fragBuilder->codeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n",
                                     args.fOutputColor, args.fOutputColor);
            fragBuilder->codeAppendf("\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
        }

    protected:
        void onSetData(const GrGLSLProgramDataManager& uniManager,
                       const GrProcessor& proc) override {
            const ColorMatrixEffect& cme = proc.cast<ColorMatrixEffect>();
            const float* m = cme.fMatrix;
            // The GL matrix is transposed from SkColorMatrix.
            float mt[]  = {
                m[0], m[5], m[10], m[15],
                m[1], m[6], m[11], m[16],
                m[2], m[7], m[12], m[17],
                m[3], m[8], m[13], m[18],
            };
            static const float kScale = 1.0f / 255.0f;
            float vec[] = {
                m[4] * kScale, m[9] * kScale, m[14] * kScale, m[19] * kScale,
            };
            uniManager.setMatrix4fv(fMatrixHandle, 1, mt);
            uniManager.set4fv(fVectorHandle, 1, vec);
        }

    private:
        GrGLSLProgramDataManager::UniformHandle fMatrixHandle;
        GrGLSLProgramDataManager::UniformHandle fVectorHandle;

        typedef GrGLSLFragmentProcessor INHERITED;
    };

private:
    ColorMatrixEffect(const SkScalar matrix[20]) {
        memcpy(fMatrix, matrix, sizeof(SkScalar) * 20);
        this->initClassID<ColorMatrixEffect>();
    }

    GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
        return new GLSLProcessor;
    }

    virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
                                       GrProcessorKeyBuilder* b) const override {
        GLSLProcessor::GenKey(*this, caps, b);
    }

    bool onIsEqual(const GrFragmentProcessor& s) const override {
        const ColorMatrixEffect& cme = s.cast<ColorMatrixEffect>();
        return 0 == memcmp(fMatrix, cme.fMatrix, sizeof(fMatrix));
    }

    void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
        // We only bother to check whether the alpha channel will be constant. If SkColorMatrix had
        // type flags it might be worth checking the other components.

        // The matrix is defined such the 4th row determines the output alpha. The first four
        // columns of that row multiply the input r, g, b, and a, respectively, and the last column
        // is the "translation".
        static const uint32_t kRGBAFlags[] = {
            kR_GrColorComponentFlag,
            kG_GrColorComponentFlag,
            kB_GrColorComponentFlag,
            kA_GrColorComponentFlag
        };
        static const int kShifts[] = {
            GrColor_SHIFT_R, GrColor_SHIFT_G, GrColor_SHIFT_B, GrColor_SHIFT_A,
        };
        enum {
            kAlphaRowStartIdx = 15,
            kAlphaRowTranslateIdx = 19,
        };

        SkScalar outputA = 0;
        for (int i = 0; i < 4; ++i) {
            // If any relevant component of the color to be passed through the matrix is non-const
            // then we can't know the final result.
            if (0 != fMatrix[kAlphaRowStartIdx + i]) {
                if (!(inout->validFlags() & kRGBAFlags[i])) {
                    inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
                    return;
                } else {
                    uint32_t component = (inout->color() >> kShifts[i]) & 0xFF;
                    outputA += fMatrix[kAlphaRowStartIdx + i] * component;
                }
            }
        }
        outputA += fMatrix[kAlphaRowTranslateIdx];
        // We pin the color to [0,1]. This would happen to the *final* color output from the frag
        // shader but currently the effect does not pin its own output. So in the case of over/
        // underflow this may deviate from the actual result. Maybe the effect should pin its
        // result if the matrix could over/underflow for any component?
        inout->setToOther(kA_GrColorComponentFlag,
                          static_cast<uint8_t>(SkScalarPin(outputA, 0, 255)) << GrColor_SHIFT_A,
                          GrInvariantOutput::kWill_ReadInput);
    }

    SkScalar fMatrix[20];

    typedef GrFragmentProcessor INHERITED;
};

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(ColorMatrixEffect);

sk_sp<GrFragmentProcessor> ColorMatrixEffect::TestCreate(GrProcessorTestData* d) {
    SkScalar colorMatrix[20];
    for (size_t i = 0; i < SK_ARRAY_COUNT(colorMatrix); ++i) {
        colorMatrix[i] = d->fRandom->nextSScalar1();
    }
    return ColorMatrixEffect::Make(colorMatrix);
}

sk_sp<GrFragmentProcessor> SkColorMatrixFilterRowMajor255::asFragmentProcessor(
                                                                  GrContext*, SkColorSpace*) const {
    return ColorMatrixEffect::Make(fMatrix);
}

#endif

#ifndef SK_IGNORE_TO_STRING
void SkColorMatrixFilterRowMajor255::toString(SkString* str) const {
    str->append("SkColorMatrixFilterRowMajor255: ");

    str->append("matrix: (");
    for (int i = 0; i < 20; ++i) {
        str->appendScalar(fMatrix[i]);
        if (i < 19) {
            str->append(", ");
        }
    }
    str->append(")");
}
#endif

///////////////////////////////////////////////////////////////////////////////

sk_sp<SkColorFilter> SkColorFilter::MakeMatrixFilterRowMajor255(const SkScalar array[20]) {
    return sk_sp<SkColorFilter>(new SkColorMatrixFilterRowMajor255(array));
}

///////////////////////////////////////////////////////////////////////////////

sk_sp<SkColorFilter>
SkColorMatrixFilterRowMajor255::MakeSingleChannelOutput(const SkScalar row[5]) {
    SkASSERT(row);
    auto cf = sk_make_sp<SkColorMatrixFilterRowMajor255>();
    static_assert(sizeof(SkScalar) * 5 * 4 == sizeof(cf->fMatrix), "sizes don't match");
    for (int i = 0; i < 4; ++i) {
        memcpy(cf->fMatrix + 5 * i, row, sizeof(SkScalar) * 5);
    }
    cf->initState();
    return cf;
}