aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkColorData.h
blob: 3e61c18ae33605400e9f143797335ca42bfefe78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkColorData_DEFINED
#define SkColorData_DEFINED

// turn this own for extra debug checking when blending onto 565
#ifdef SK_DEBUG
    #define CHECK_FOR_565_OVERFLOW
#endif

#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkTo.h"

//////////////////////////////////////////////////////////////////////////////

#define SkASSERT_IS_BYTE(x)     SkASSERT(0 == ((x) & ~0xFF))

/*
 *  Skia's 32bit backend only supports 1 sizzle order at a time (compile-time).
 *  This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B.
 *
 *  For easier compatibility with Skia's GPU backend, we further restrict these
 *  to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does
 *  not directly correspond to the same shift-order, since we have to take endianess
 *  into account.
 *
 *  Here we enforce this constraint.
 */

#ifdef SK_CPU_BENDIAN
    #define SK_BGRA_B32_SHIFT   24
    #define SK_BGRA_G32_SHIFT   16
    #define SK_BGRA_R32_SHIFT   8
    #define SK_BGRA_A32_SHIFT   0
#else
    #define SK_BGRA_B32_SHIFT   0
    #define SK_BGRA_G32_SHIFT   8
    #define SK_BGRA_R32_SHIFT   16
    #define SK_BGRA_A32_SHIFT   24
#endif

#if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA)
    #error "can't define PMCOLOR to be RGBA and BGRA"
#endif

#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA  \
    (SK_A32_SHIFT == SK_RGBA_A32_SHIFT &&    \
     SK_R32_SHIFT == SK_RGBA_R32_SHIFT &&    \
     SK_G32_SHIFT == SK_RGBA_G32_SHIFT &&    \
     SK_B32_SHIFT == SK_RGBA_B32_SHIFT)

#define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA  \
    (SK_A32_SHIFT == SK_BGRA_A32_SHIFT &&    \
     SK_R32_SHIFT == SK_BGRA_R32_SHIFT &&    \
     SK_G32_SHIFT == SK_BGRA_G32_SHIFT &&    \
     SK_B32_SHIFT == SK_BGRA_B32_SHIFT)


#define SK_A_INDEX  (SK_A32_SHIFT/8)
#define SK_R_INDEX  (SK_R32_SHIFT/8)
#define SK_G_INDEX  (SK_G32_SHIFT/8)
#define SK_B_INDEX  (SK_B32_SHIFT/8)

#if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
    #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values"
#endif

#if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
    #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values"
#endif

#if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA)
    // deduce which to define from the _SHIFT defines

    #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
        #define SK_PMCOLOR_IS_RGBA
    #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
        #define SK_PMCOLOR_IS_BGRA
    #else
        #error "need 32bit packing to be either RGBA or BGRA"
    #endif
#endif

// hide these now that we're done
#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
#undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA

//////////////////////////////////////////////////////////////////////////////

// Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
// pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
// no need to pass in the colortype to this function.
static inline uint32_t SkSwizzle_RB(uint32_t c) {
    static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);

    unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
    unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
    return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
}

static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
    SkASSERT_IS_BYTE(a);
    SkASSERT_IS_BYTE(r);
    SkASSERT_IS_BYTE(g);
    SkASSERT_IS_BYTE(b);
    return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
           (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
}

static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
    SkASSERT_IS_BYTE(a);
    SkASSERT_IS_BYTE(r);
    SkASSERT_IS_BYTE(g);
    SkASSERT_IS_BYTE(b);
    return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
           (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
}

static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
#ifdef SK_PMCOLOR_IS_RGBA
    return c;
#else
    return SkSwizzle_RB(c);
#endif
}

static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
#ifdef SK_PMCOLOR_IS_BGRA
    return c;
#else
    return SkSwizzle_RB(c);
#endif
}

//////////////////////////////////////////////////////////////////////////////

///@{
/** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
#define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
#define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
#define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
///@}

///@{
/** A float value which specifies this channel's contribution to luminance. */
#define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
#define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
#define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
///@}

/** Computes the luminance from the given r, g, and b in accordance with
    SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
*/
static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
    //The following is
    //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
    //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
    return (r * 54 + g * 183 + b * 19) >> 8;
}

/**
 *  Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80.
 *  This is slightly more accurate than SkAlpha255To256.
 */
static inline unsigned Sk255To256(U8CPU value) {
    SkASSERT(SkToU8(value) == value);
    return value + (value >> 7);
}

/** Calculates 256 - (value * alpha256) / 255 in range [0,256],
 *  for [0,255] value and [0,256] alpha256.
 */
static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) {
    unsigned prod = 0xFFFF - value * alpha256;
    return (prod + (prod >> 8)) >> 8;
}

//  The caller may want negative values, so keep all params signed (int)
//  so we don't accidentally slip into unsigned math and lose the sign
//  extension when we shift (in SkAlphaMul)
static inline int SkAlphaBlend(int src, int dst, int scale256) {
    SkASSERT((unsigned)scale256 <= 256);
    return dst + SkAlphaMul(src - dst, scale256);
}

/**
 *  Returns (src * alpha + dst * (255 - alpha)) / 255
 *
 *  This is more accurate than SkAlphaBlend, but slightly slower
 */
static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) {
    SkASSERT((int16_t)src == src);
    SkASSERT((int16_t)dst == dst);
    SkASSERT((uint8_t)alpha == alpha);

    int prod = (src - dst) * alpha + 128;
    prod = (prod + (prod >> 8)) >> 8;
    return dst + prod;
}

#define SkR16Assert(r)  SkASSERT((unsigned)(r) <= SK_R16_MASK)
#define SkG16Assert(g)  SkASSERT((unsigned)(g) <= SK_G16_MASK)
#define SkB16Assert(b)  SkASSERT((unsigned)(b) <= SK_B16_MASK)

static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
    SkASSERT(r <= SK_R16_MASK);
    SkASSERT(g <= SK_G16_MASK);
    SkASSERT(b <= SK_B16_MASK);

    return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
}

#define SK_R16_MASK_IN_PLACE        (SK_R16_MASK << SK_R16_SHIFT)
#define SK_G16_MASK_IN_PLACE        (SK_G16_MASK << SK_G16_SHIFT)
#define SK_B16_MASK_IN_PLACE        (SK_B16_MASK << SK_B16_SHIFT)

/** Expand the 16bit color into a 32bit value that can be scaled all at once
    by a value up to 32. Used in conjunction with SkCompact_rgb_16.
*/
static inline uint32_t SkExpand_rgb_16(U16CPU c) {
    SkASSERT(c == (uint16_t)c);

    return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE);
}

/** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit
    color value. The computation yields only 16bits of valid data, but we claim
    to return 32bits, so that the compiler won't generate extra instructions to
    "clean" the top 16bits. However, the top 16 can contain garbage, so it is
    up to the caller to safely ignore them.
*/
static inline U16CPU SkCompact_rgb_16(uint32_t c) {
    return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE);
}

/** Scale the 16bit color value by the 0..256 scale parameter.
    The computation yields only 16bits of valid data, but we claim
    to return 32bits, so that the compiler won't generate extra instructions to
    "clean" the top 16bits.
*/
static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) {
    return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5);
}

// this helper explicitly returns a clean 16bit value (but slower)
#define SkAlphaMulRGB16_ToU16(c, s)  (uint16_t)SkAlphaMulRGB16(c, s)

/** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter.
    The computation yields only 16bits of valid data, but we claim to return
    32bits, so that the compiler won't generate extra instructions to "clean"
    the top 16bits.
*/
static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) {
    uint32_t dst_expand = SkExpand_rgb_16(dst) * scale;
    return SkCompact_rgb_16((src_expand + dst_expand) >> 5);
}

/** Blend src and dst 16bit colors by the 0..256 scale parameter.
    The computation yields only 16bits of valid data, but we claim
    to return 32bits, so that the compiler won't generate extra instructions to
    "clean" the top 16bits.
*/
static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) {
    SkASSERT((unsigned)srcScale <= 256);

    srcScale >>= 3;

    uint32_t src32 = SkExpand_rgb_16(src);
    uint32_t dst32 = SkExpand_rgb_16(dst);
    return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5));
}

static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[],
                                int srcScale, int count) {
    SkASSERT(count > 0);
    SkASSERT((unsigned)srcScale <= 256);

    srcScale >>= 3;

    do {
        uint32_t src32 = SkExpand_rgb_16(*src++);
        uint32_t dst32 = SkExpand_rgb_16(*dst);
        *dst++ = static_cast<uint16_t>(
            SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)));
    } while (--count > 0);
}

#ifdef SK_DEBUG
    static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) {
        SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK);
        SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK);
        SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK);

        return a + b;
    }
#else
    #define SkRGB16Add(a, b)  ((a) + (b))
#endif

///////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG
    #define SkPMColorAssert(color_value)                                    \
        do {                                                                \
            SkPMColor pm_color_value = (color_value);                       \
            uint32_t alpha_color_value = SkGetPackedA32(pm_color_value);    \
            SkA32Assert(alpha_color_value);                                 \
            SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value);  \
            SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value);  \
            SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value);  \
        } while (false)
#else
    #define SkPMColorAssert(c)
#endif

static inline bool SkPMColorValid(SkPMColor c) {
    auto a = SkGetPackedA32(c);
    bool valid = a <= SK_A32_MASK
              && SkGetPackedR32(c) <= a
              && SkGetPackedG32(c) <= a
              && SkGetPackedB32(c) <= a;
    if (valid) {
        SkPMColorAssert(c);  // Make sure we're consistent when it counts.
    }
    return valid;
}

static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) {
    return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c),
                              SkGetPackedG32(c), SkGetPackedB32(c));
}

static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) {
    return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c),
                              SkGetPackedG32(c), SkGetPackedB32(c));
}

/**
 * Abstract 4-byte interpolation, implemented on top of SkPMColor
 * utility functions. Third parameter controls blending of the first two:
 *   (src, dst, 0) returns dst
 *   (src, dst, 0xFF) returns src
 *   srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
 */
static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
                                         unsigned scale) {
    unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
    unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
    unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
    unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);

    return SkPackARGB32(a, r, g, b);
}

/**
 * Abstract 4-byte interpolation, implemented on top of SkPMColor
 * utility functions. Third parameter controls blending of the first two:
 *   (src, dst, 0) returns dst
 *   (src, dst, 0xFF) returns src
 */
static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
                                         U8CPU srcWeight) {
    unsigned scale = SkAlpha255To256(srcWeight);
    return SkFourByteInterp256(src, dst, scale);
}

/**
 * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
 */
static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
    const uint32_t mask = 0x00FF00FF;
    *ag = (color >> 8) & mask;
    *rb = color & mask;
}

/**
 * 0xAARRGGBB -> 0x00AA00GG00RR00BB
 * (note, ARGB -> AGRB)
 */
static inline uint64_t SkSplay(uint32_t color) {
    const uint32_t mask = 0x00FF00FF;
    uint64_t agrb = (color >> 8) & mask;  // 0x0000000000AA00GG
    agrb <<= 32;                          // 0x00AA00GG00000000
    agrb |= color & mask;                 // 0x00AA00GG00RR00BB
    return agrb;
}

/**
 * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
 */
static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
    const uint32_t mask = 0xFF00FF00;
    return (ag & mask) | ((rb & mask) >> 8);
}

/**
 * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
 * (note, AGRB -> ARGB)
 */
static inline uint32_t SkUnsplay(uint64_t agrb) {
    const uint32_t mask = 0xFF00FF00;
    return SkPMColor(
        ((agrb & mask) >> 8) |   // 0x00RR00BB
        ((agrb >> 32) & mask));  // 0xAARRGGBB
}

static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
    SkASSERT(scale <= 256);

    // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
    uint32_t src_ag, src_rb, dst_ag, dst_rb;
    SkSplay(src, &src_ag, &src_rb);
    SkSplay(dst, &dst_ag, &dst_rb);

    const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
    const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;

    return SkUnsplay(ret_ag, ret_rb);
}

static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
    SkASSERT(scale <= 256);
    // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
    return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
}

// TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.

/**
 * Same as SkFourByteInterp256, but faster.
 */
static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
    // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
    if (sizeof(void*) == 4) {
        return SkFastFourByteInterp256_32(src, dst, scale);
    } else {
        return SkFastFourByteInterp256_64(src, dst, scale);
    }
}

/**
 * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
 * srcWeight scaling to [0, 256].
 */
static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
                                             SkPMColor dst,
                                             U8CPU srcWeight) {
    SkASSERT(srcWeight <= 255);
    // scale = srcWeight + (srcWeight >> 7) is more accurate than
    // scale = srcWeight + 1, but 7% slower
    return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
}

/**
 * Interpolates between colors src and dst using [0,256] scale.
 */
static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) {
    return SkFastFourByteInterp256(src, dst, scale);
}

static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
    SkASSERT((unsigned)aa <= 255);

    unsigned src_scale = SkAlpha255To256(aa);
    unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale);

    const uint32_t mask = 0xFF00FF;

    uint32_t src_rb = (src & mask) * src_scale;
    uint32_t src_ag = ((src >> 8) & mask) * src_scale;

    uint32_t dst_rb = (dst & mask) * dst_scale;
    uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale;

    return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask);
}

////////////////////////////////////////////////////////////////////////////////////////////
// Convert a 32bit pixel to a 16bit pixel (no dither)

#define SkR32ToR16_MACRO(r)   ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
#define SkG32ToG16_MACRO(g)   ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
#define SkB32ToB16_MACRO(b)   ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))

#ifdef SK_DEBUG
    static inline unsigned SkR32ToR16(unsigned r) {
        SkR32Assert(r);
        return SkR32ToR16_MACRO(r);
    }
    static inline unsigned SkG32ToG16(unsigned g) {
        SkG32Assert(g);
        return SkG32ToG16_MACRO(g);
    }
    static inline unsigned SkB32ToB16(unsigned b) {
        SkB32Assert(b);
        return SkB32ToB16_MACRO(b);
    }
#else
    #define SkR32ToR16(r)   SkR32ToR16_MACRO(r)
    #define SkG32ToG16(g)   SkG32ToG16_MACRO(g)
    #define SkB32ToB16(b)   SkB32ToB16_MACRO(b)
#endif

#define SkPacked32ToR16(c)  (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK)
#define SkPacked32ToG16(c)  (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK)
#define SkPacked32ToB16(c)  (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK)

static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
    unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
    unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
    unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
    return r | g | b;
}

static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
    return  (SkR32ToR16(r) << SK_R16_SHIFT) |
            (SkG32ToG16(g) << SK_G16_SHIFT) |
            (SkB32ToB16(b) << SK_B16_SHIFT);
}

#define SkPixel32ToPixel16_ToU16(src)   SkToU16(SkPixel32ToPixel16(src))

/////////////////////////////////////////////////////////////////////////////////////////
// Fast dither from 32->16

#define SkShouldDitherXY(x, y)  (((x) ^ (y)) & 1)

static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
    r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS);
    g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS);
    b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS);

    return SkPackRGB16(r, g, b);
}

static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) {
    return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c));
}

/*  Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits)
    It is now suitable for combining with a scaled expanded_rgb_16 color
    as in SkSrcOver32To16().
    We must do this 565 high-bit replication, in order for the subsequent add
    to saturate properly (and not overflow). If we take the 8 bits as is, it is
    possible to overflow.
*/
static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) {
    unsigned sr = SkPacked32ToR16(c);
    unsigned sg = SkPacked32ToG16(c);
    unsigned sb = SkPacked32ToB16(c);

    sr = (sr << 5) | sr;
    sg = (sg << 5) | (sg >> 1);
    sb = (sb << 5) | sb;
    return (sr << 11) | (sg << 21) | (sb << 0);
}

/*  SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
    (with dirt in the high 16bits, so caller beware).
*/
static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
    unsigned sr = SkGetPackedR32(src);
    unsigned sg = SkGetPackedG32(src);
    unsigned sb = SkGetPackedB32(src);

    unsigned dr = SkGetPackedR16(dst);
    unsigned dg = SkGetPackedG16(dst);
    unsigned db = SkGetPackedB16(dst);

    unsigned isa = 255 - SkGetPackedA32(src);

    dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
    dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
    db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);

    return SkPackRGB16(dr, dg, db);
}

static inline SkPMColor SkPixel16ToPixel32(U16CPU src) {
    SkASSERT(src == SkToU16(src));

    unsigned    r = SkPacked16ToR32(src);
    unsigned    g = SkPacked16ToG32(src);
    unsigned    b = SkPacked16ToB32(src);

    SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
    SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
    SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));

    return SkPackARGB32(0xFF, r, g, b);
}

// similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor
static inline SkColor SkPixel16ToColor(U16CPU src) {
    SkASSERT(src == SkToU16(src));

    unsigned    r = SkPacked16ToR32(src);
    unsigned    g = SkPacked16ToG32(src);
    unsigned    b = SkPacked16ToB32(src);

    SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
    SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
    SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));

    return SkColorSetRGB(r, g, b);
}

///////////////////////////////////////////////////////////////////////////////

typedef uint16_t SkPMColor16;

// Put in OpenGL order (r g b a)
#define SK_A4444_SHIFT    0
#define SK_R4444_SHIFT    12
#define SK_G4444_SHIFT    8
#define SK_B4444_SHIFT    4

#define SkA32To4444(a)  ((unsigned)(a) >> 4)
#define SkR32To4444(r)  ((unsigned)(r) >> 4)
#define SkG32To4444(g)  ((unsigned)(g) >> 4)
#define SkB32To4444(b)  ((unsigned)(b) >> 4)

static inline U8CPU SkReplicateNibble(unsigned nib) {
    SkASSERT(nib <= 0xF);
    return (nib << 4) | nib;
}

#define SkA4444ToA32(a)     SkReplicateNibble(a)
#define SkR4444ToR32(r)     SkReplicateNibble(r)
#define SkG4444ToG32(g)     SkReplicateNibble(g)
#define SkB4444ToB32(b)     SkReplicateNibble(b)

#define SkGetPackedA4444(c)     (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
#define SkGetPackedR4444(c)     (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
#define SkGetPackedG4444(c)     (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
#define SkGetPackedB4444(c)     (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)

#define SkPacked4444ToA32(c)    SkReplicateNibble(SkGetPackedA4444(c))
#define SkPacked4444ToR32(c)    SkReplicateNibble(SkGetPackedR4444(c))
#define SkPacked4444ToG32(c)    SkReplicateNibble(SkGetPackedG4444(c))
#define SkPacked4444ToB32(c)    SkReplicateNibble(SkGetPackedB4444(c))

#ifdef SK_DEBUG
static inline void SkPMColor16Assert(U16CPU c) {
    unsigned a = SkGetPackedA4444(c);
    unsigned r = SkGetPackedR4444(c);
    unsigned g = SkGetPackedG4444(c);
    unsigned b = SkGetPackedB4444(c);

    SkASSERT(a <= 0xF);
    SkASSERT(r <= a);
    SkASSERT(g <= a);
    SkASSERT(b <= a);
}
#else
#define SkPMColor16Assert(c)
#endif

static inline unsigned SkAlpha15To16(unsigned a) {
    SkASSERT(a <= 0xF);
    return a + (a >> 3);
}

#ifdef SK_DEBUG
    static inline int SkAlphaMul4(int value, int scale) {
        SkASSERT((unsigned)scale <= 0x10);
        return value * scale >> 4;
    }
#else
    #define SkAlphaMul4(value, scale)   ((value) * (scale) >> 4)
#endif

static inline unsigned SkR4444ToR565(unsigned r) {
    SkASSERT(r <= 0xF);
    return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS));
}

static inline unsigned SkG4444ToG565(unsigned g) {
    SkASSERT(g <= 0xF);
    return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS));
}

static inline unsigned SkB4444ToB565(unsigned b) {
    SkASSERT(b <= 0xF);
    return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS));
}

static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r,
                                         unsigned g, unsigned b) {
    SkASSERT(a <= 0xF);
    SkASSERT(r <= a);
    SkASSERT(g <= a);
    SkASSERT(b <= a);

    return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) |
                         (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT));
}

static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) {
    SkASSERT(scale <= 16);

    const unsigned mask = 0xF0F;    //gMask_0F0F;

#if 0
    unsigned rb = ((c & mask) * scale) >> 4;
    unsigned ag = ((c >> 4) & mask) * scale;
    return (rb & mask) | (ag & ~mask);
#else
    unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12);
    unsigned scaled_c = (expanded_c * scale) >> 4;
    return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4));
#endif
}

/** Expand the SkPMColor16 color into a 32bit value that can be scaled all at
    once by a value up to 16.
*/
static inline uint32_t SkExpand_4444(U16CPU c) {
    SkASSERT(c == (uint16_t)c);

    const unsigned mask = 0xF0F;    //gMask_0F0F;
    return (c & mask) | ((c & ~mask) << 12);
}

static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) {
    unsigned sa = SkGetPackedA4444(s);
    unsigned sr = SkR4444ToR565(SkGetPackedR4444(s));
    unsigned sg = SkG4444ToG565(SkGetPackedG4444(s));
    unsigned sb = SkB4444ToB565(SkGetPackedB4444(s));

    // To avoid overflow, we have to clear the low bit of the synthetic sg
    // if the src alpha is <= 7.
    // to see why, try blending 0x4444 on top of 565-white and watch green
    // overflow (sum == 64)
    sg &= ~(~(sa >> 3) & 1);

    unsigned scale = SkAlpha15To16(15 - sa);
    unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale);
    unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale);
    unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale);

#if 0
    if (sg + dg > 63) {
        SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg);
    }
#endif
    return SkPackRGB16(sr + dr, sg + dg, sb + db);
}

static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) {
    SkASSERT((unsigned)scale16 <= 16);

    return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst);
}

static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
    uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
                 (SkGetPackedR4444(c) << SK_R32_SHIFT) |
                 (SkGetPackedG4444(c) << SK_G32_SHIFT) |
                 (SkGetPackedB4444(c) << SK_B32_SHIFT);
    return d | (d << 4);
}

static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) {
    return  (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) |
    (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) |
    (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) |
    (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT);
}

// cheap 2x2 dither
static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r,
                                               U8CPU g, U8CPU b) {
    // to ensure that we stay a legal premultiplied color, we take the max()
    // of the truncated and dithered alpha values. If we didn't, cases like
    // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...)
    // which is not legal premultiplied, since a < color
    unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4;
    a = SkMax32(a >> 4, dithered_a);
    // these we just dither in place
    r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4;
    g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4;
    b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4;

    return SkPackARGB4444(a, r, g, b);
}

static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) {
    return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c),
                                SkGetPackedG32(c), SkGetPackedB32(c));
}

/*  Assumes 16bit is in standard RGBA order.
    Transforms a normal ARGB_8888 into the same byte order as
    expanded ARGB_4444, but keeps each component 8bits
*/
static inline uint32_t SkExpand_8888(SkPMColor c) {
    return  (((c >> SK_R32_SHIFT) & 0xFF) << 24) |
            (((c >> SK_G32_SHIFT) & 0xFF) <<  8) |
            (((c >> SK_B32_SHIFT) & 0xFF) << 16) |
            (((c >> SK_A32_SHIFT) & 0xFF) <<  0);
}

/*  Undo the operation of SkExpand_8888, turning the argument back into
    a SkPMColor.
*/
static inline SkPMColor SkCompact_8888(uint32_t c) {
    return  (((c >> 24) & 0xFF) << SK_R32_SHIFT) |
            (((c >>  8) & 0xFF) << SK_G32_SHIFT) |
            (((c >> 16) & 0xFF) << SK_B32_SHIFT) |
            (((c >>  0) & 0xFF) << SK_A32_SHIFT);
}

/*  Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format,
    but this routine just keeps the high 4bits of each component in the low
    4bits of the result (just like a newly expanded PMColor16).
*/
static inline uint32_t SkExpand32_4444(SkPMColor c) {
    return  (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) |
            (((c >> (SK_G32_SHIFT + 4)) & 0xF) <<  8) |
            (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) |
            (((c >> (SK_A32_SHIFT + 4)) & 0xF) <<  0);
}

// takes two values and alternamtes them as part of a memset16
// used for cheap 2x2 dithering when the colors are opaque
void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);

///////////////////////////////////////////////////////////////////////////////

static inline int SkUpscale31To32(int value) {
    SkASSERT((unsigned)value <= 31);
    return value + (value >> 4);
}

static inline int SkBlend32(int src, int dst, int scale) {
    SkASSERT((unsigned)src <= 0xFF);
    SkASSERT((unsigned)dst <= 0xFF);
    SkASSERT((unsigned)scale <= 32);
    return dst + ((src - dst) * scale >> 5);
}

static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
                                     SkPMColor dst, uint16_t mask) {
    if (mask == 0) {
        return dst;
    }

    /*  We want all of these in 5bits, hence the shifts in case one of them
     *  (green) is 6bits.
     */
    int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
    int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
    int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);

    // Now upscale them to 0..32, so we can use blend32
    maskR = SkUpscale31To32(maskR);
    maskG = SkUpscale31To32(maskG);
    maskB = SkUpscale31To32(maskB);

    // srcA has been upscaled to 256 before passed into this function
    maskR = maskR * srcA >> 8;
    maskG = maskG * srcA >> 8;
    maskB = maskB * srcA >> 8;

    int dstR = SkGetPackedR32(dst);
    int dstG = SkGetPackedG32(dst);
    int dstB = SkGetPackedB32(dst);

    // LCD blitting is only supported if the dst is known/required
    // to be opaque
    return SkPackARGB32(0xFF,
                        SkBlend32(srcR, dstR, maskR),
                        SkBlend32(srcG, dstG, maskG),
                        SkBlend32(srcB, dstB, maskB));
}

static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
                                           SkPMColor dst, uint16_t mask,
                                           SkPMColor opaqueDst) {
    if (mask == 0) {
        return dst;
    }

    if (0xFFFF == mask) {
        return opaqueDst;
    }

    /*  We want all of these in 5bits, hence the shifts in case one of them
     *  (green) is 6bits.
     */
    int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
    int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
    int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);

    // Now upscale them to 0..32, so we can use blend32
    maskR = SkUpscale31To32(maskR);
    maskG = SkUpscale31To32(maskG);
    maskB = SkUpscale31To32(maskB);

    int dstR = SkGetPackedR32(dst);
    int dstG = SkGetPackedG32(dst);
    int dstB = SkGetPackedB32(dst);

    // LCD blitting is only supported if the dst is known/required
    // to be opaque
    return SkPackARGB32(0xFF,
                        SkBlend32(srcR, dstR, maskR),
                        SkBlend32(srcG, dstG, maskG),
                        SkBlend32(srcB, dstB, maskB));
}

static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[],
                                  SkColor src, int width, SkPMColor) {
    int srcA = SkColorGetA(src);
    int srcR = SkColorGetR(src);
    int srcG = SkColorGetG(src);
    int srcB = SkColorGetB(src);

    srcA = SkAlpha255To256(srcA);

    for (int i = 0; i < width; i++) {
        dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
    }
}

static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[],
                                        SkColor src, int width,
                                        SkPMColor opaqueDst) {
    int srcR = SkColorGetR(src);
    int srcG = SkColorGetG(src);
    int srcB = SkColorGetB(src);

    for (int i = 0; i < width; i++) {
        dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i],
                                    opaqueDst);
    }
}

#endif