aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkChunkAlloc.cpp
blob: 3f30276f1b36ed45884a0a30335b96ce8f8cd185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkChunkAlloc.h"

// Don't malloc any chunks smaller than this
#define MIN_CHUNKALLOC_BLOCK_SIZE   1024

// Return the new min blocksize given the current value
static size_t increase_next_size(size_t size) {
    return size + (size >> 1);
}

///////////////////////////////////////////////////////////////////////////////

struct SkChunkAlloc::Block {
    Block*  fNext;
    size_t  fFreeSize;
    char*   fFreePtr;
    // data[] follows

    size_t blockSize() { 
        char* start = this->startOfData();
        size_t bytes = fFreePtr - start;
        return fFreeSize + bytes;
    }

    void reset() {
        fNext = nullptr;
        fFreeSize = this->blockSize();
        fFreePtr = this->startOfData();
    }

    char* startOfData() {
        return reinterpret_cast<char*>(this + 1);
    }

    static void FreeChain(Block* block) {
        while (block) {
            Block* next = block->fNext;
            sk_free(block);
            block = next;
        }
    };

    bool contains(const void* addr) const {
        const char* ptr = reinterpret_cast<const char*>(addr);
        return ptr >= (const char*)(this + 1) && ptr < fFreePtr;
    }
};

///////////////////////////////////////////////////////////////////////////////

SkChunkAlloc::SkChunkAlloc(size_t minSize) {
    if (minSize < MIN_CHUNKALLOC_BLOCK_SIZE) {
        minSize = MIN_CHUNKALLOC_BLOCK_SIZE;
    }

    fBlock = nullptr;
    fMinSize = minSize;
    fChunkSize = fMinSize;
    fTotalCapacity = 0;
    fTotalUsed = 0;
    SkDEBUGCODE(fTotalLost = 0;)
    SkDEBUGCODE(fBlockCount = 0;)
}

SkChunkAlloc::~SkChunkAlloc() {
    this->reset();
}

void SkChunkAlloc::reset() {
    Block::FreeChain(fBlock);
    fBlock = nullptr;
    fChunkSize = fMinSize;  // reset to our initial minSize
    fTotalCapacity = 0;
    fTotalUsed = 0;
    SkDEBUGCODE(fTotalLost = 0;)
    SkDEBUGCODE(fBlockCount = 0;)
}

void SkChunkAlloc::rewind() {
    SkDEBUGCODE(this->validate();)

    Block* largest = fBlock;

    if (largest) {
        Block* next;
        for (Block* cur = largest->fNext; cur; cur = next) {
            next = cur->fNext;
            if (cur->blockSize() > largest->blockSize()) {
                sk_free(largest);
                largest = cur;
            } else {
                sk_free(cur);
            }
        }

        largest->reset();
        fTotalCapacity = largest->blockSize();
        SkDEBUGCODE(fBlockCount = 1;)
    } else {
        fTotalCapacity = 0;
        SkDEBUGCODE(fBlockCount = 0;)
    }

    fBlock = largest;
    fChunkSize = fMinSize;  // reset to our initial minSize
    fTotalUsed = 0;
    SkDEBUGCODE(fTotalLost = 0;)
    SkDEBUGCODE(this->validate();)
}

SkChunkAlloc::Block* SkChunkAlloc::newBlock(size_t bytes, AllocFailType ftype) {
    size_t size = bytes;
    if (size < fChunkSize) {
        size = fChunkSize;
    }

    Block* block = (Block*)sk_malloc_flags(sizeof(Block) + size,
                        ftype == kThrow_AllocFailType ? SK_MALLOC_THROW : 0);

    if (block) {
        block->fFreeSize = size;
        block->fFreePtr = block->startOfData();

        fTotalCapacity += size;
        SkDEBUGCODE(fBlockCount += 1;)

        fChunkSize = increase_next_size(fChunkSize);
    }
    return block;
}

SkChunkAlloc::Block* SkChunkAlloc::addBlockIfNecessary(size_t bytes, AllocFailType ftype) {
    SkASSERT(SkIsAlign4(bytes));

    if (!fBlock || bytes > fBlock->fFreeSize) {
        Block* block = this->newBlock(bytes, ftype);
        if (!block) {
            return nullptr;
        }
#ifdef SK_DEBUG
        if (fBlock) {
            fTotalLost += fBlock->fFreeSize;
        }
#endif
        block->fNext = fBlock;
        fBlock = block;
    }

    SkASSERT(fBlock && bytes <= fBlock->fFreeSize);
    return fBlock;
}

void* SkChunkAlloc::alloc(size_t bytes, AllocFailType ftype) {
    SkDEBUGCODE(this->validate();)

    bytes = SkAlign4(bytes);

    Block* block = this->addBlockIfNecessary(bytes, ftype);
    if (!block) {
        return nullptr;
    }

    char* ptr = block->fFreePtr;

    fTotalUsed += bytes;
    block->fFreeSize -= bytes;
    block->fFreePtr = ptr + bytes;
    SkDEBUGCODE(this->validate();)
    return ptr;
}

size_t SkChunkAlloc::unalloc(void* ptr) {
    SkDEBUGCODE(this->validate();)

    size_t bytes = 0;
    Block* block = fBlock;
    if (block) {
        char* cPtr = reinterpret_cast<char*>(ptr);
        char* start = block->startOfData();
        if (start <= cPtr && cPtr < block->fFreePtr) {
            bytes = block->fFreePtr - cPtr;
            fTotalUsed -= bytes;
            block->fFreeSize += bytes;
            block->fFreePtr = cPtr;
        }
    }
    SkDEBUGCODE(this->validate();)
    return bytes;
}

bool SkChunkAlloc::contains(const void* addr) const {
    const Block* block = fBlock;
    while (block) {
        if (block->contains(addr)) {
            return true;
        }
        block = block->fNext;
    }
    return false;
}

#ifdef SK_DEBUG
void SkChunkAlloc::validate() {
    int numBlocks = 0;
    size_t totCapacity = 0;
    size_t totUsed = 0;
    size_t totLost = 0;
    size_t totAvailable = 0;

    for (Block* temp = fBlock; temp; temp = temp->fNext) {
        ++numBlocks;
        totCapacity += temp->blockSize();
        totUsed += temp->fFreePtr - temp->startOfData();
        if (temp == fBlock) {
            totAvailable += temp->fFreeSize;
        } else {
            totLost += temp->fFreeSize;
        }
    }

    SkASSERT(fBlockCount == numBlocks);
    SkASSERT(fTotalCapacity == totCapacity);
    SkASSERT(fTotalUsed == totUsed);
    SkASSERT(fTotalLost == totLost);
    SkASSERT(totCapacity == totUsed + totLost + totAvailable);
}
#endif