blob: 62cdf1532f75b15738c296cf786d24b23ed1dfa0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkChunkAlloc.h"
// Don't malloc any chunks smaller than this
#define MIN_CHUNKALLOC_BLOCK_SIZE 1024
// Return the new min blocksize given the current value
static size_t increase_next_size(size_t size) {
return size + (size >> 1);
}
///////////////////////////////////////////////////////////////////////////////
struct SkChunkAlloc::Block {
Block* fNext;
size_t fFreeSize;
char* fFreePtr;
// data[] follows
char* startOfData() {
return reinterpret_cast<char*>(this + 1);
}
static void FreeChain(Block* block) {
while (block) {
Block* next = block->fNext;
sk_free(block);
block = next;
}
};
bool contains(const void* addr) const {
const char* ptr = reinterpret_cast<const char*>(addr);
return ptr >= (const char*)(this + 1) && ptr < fFreePtr;
}
};
///////////////////////////////////////////////////////////////////////////////
SkChunkAlloc::SkChunkAlloc(size_t minSize) {
if (minSize < MIN_CHUNKALLOC_BLOCK_SIZE) {
minSize = MIN_CHUNKALLOC_BLOCK_SIZE;
}
fBlock = NULL;
fMinSize = minSize;
fChunkSize = fMinSize;
fTotalCapacity = 0;
fTotalUsed = 0;
fBlockCount = 0;
}
SkChunkAlloc::~SkChunkAlloc() {
this->reset();
}
void SkChunkAlloc::reset() {
Block::FreeChain(fBlock);
fBlock = NULL;
fChunkSize = fMinSize; // reset to our initial minSize
fTotalCapacity = 0;
fTotalUsed = 0;
fBlockCount = 0;
}
SkChunkAlloc::Block* SkChunkAlloc::newBlock(size_t bytes, AllocFailType ftype) {
size_t size = bytes;
if (size < fChunkSize) {
size = fChunkSize;
}
Block* block = (Block*)sk_malloc_flags(sizeof(Block) + size,
ftype == kThrow_AllocFailType ? SK_MALLOC_THROW : 0);
if (block) {
// block->fNext = fBlock;
block->fFreeSize = size;
block->fFreePtr = block->startOfData();
fTotalCapacity += size;
fBlockCount += 1;
fChunkSize = increase_next_size(fChunkSize);
}
return block;
}
void* SkChunkAlloc::alloc(size_t bytes, AllocFailType ftype) {
fTotalUsed += bytes;
bytes = SkAlign4(bytes);
Block* block = fBlock;
if (block == NULL || bytes > block->fFreeSize) {
block = this->newBlock(bytes, ftype);
if (NULL == block) {
return NULL;
}
block->fNext = fBlock;
fBlock = block;
}
SkASSERT(block && bytes <= block->fFreeSize);
char* ptr = block->fFreePtr;
block->fFreeSize -= bytes;
block->fFreePtr = ptr + bytes;
return ptr;
}
size_t SkChunkAlloc::unalloc(void* ptr) {
size_t bytes = 0;
Block* block = fBlock;
if (block) {
char* cPtr = reinterpret_cast<char*>(ptr);
char* start = block->startOfData();
if (start <= cPtr && cPtr < block->fFreePtr) {
bytes = block->fFreePtr - cPtr;
block->fFreeSize += bytes;
block->fFreePtr = cPtr;
}
}
return bytes;
}
bool SkChunkAlloc::contains(const void* addr) const {
const Block* block = fBlock;
while (block) {
if (block->contains(addr)) {
return true;
}
block = block->fNext;
}
return false;
}
|