aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkBlurMask.cpp
blob: b36bc0c61e8346a47b3bf771e67df5a2cf19a686 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBlurMask.h"

#include "SkTo.h"
#include "SkColorPriv.h"
#include "SkMaskBlurFilter.h"
#include "SkMath.h"
#include "SkTemplates.h"
#include "SkEndian.h"

// This constant approximates the scaling done in the software path's
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
// IMHO, it actually should be 1:  we blur "less" than we should do
// according to the CSS and canvas specs, simply because Safari does the same.
// Firefox used to do the same too, until 4.0 where they fixed it.  So at some
// point we should probably get rid of these scaling constants and rebaseline
// all the blur tests.
static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f;

SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) {
    return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
}

SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) {
    return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f;
}


template <typename AlphaIter>
static void merge_src_with_blur(uint8_t dst[], int dstRB,
                                AlphaIter src, int srcRB,
                                const uint8_t blur[], int blurRB,
                                int sw, int sh) {
    dstRB -= sw;
    blurRB -= sw;
    while (--sh >= 0) {
        AlphaIter rowSrc(src);
        for (int x = sw - 1; x >= 0; --x) {
            *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*rowSrc)));
            ++dst;
            ++rowSrc;
            ++blur;
        }
        dst += dstRB;
        src >>= srcRB;
        blur += blurRB;
    }
}

template <typename AlphaIter>
static void clamp_solid_with_orig(uint8_t dst[], int dstRowBytes,
                                  AlphaIter src, int srcRowBytes,
                                  int sw, int sh) {
    int x;
    while (--sh >= 0) {
        AlphaIter rowSrc(src);
        for (x = sw - 1; x >= 0; --x) {
            int s = *rowSrc;
            int d = *dst;
            *dst = SkToU8(s + d - SkMulDiv255Round(s, d));
            ++dst;
            ++rowSrc;
        }
        dst += dstRowBytes - sw;
        src >>= srcRowBytes;
    }
}

template <typename AlphaIter>
static void clamp_outer_with_orig(uint8_t dst[], int dstRowBytes,
                                  AlphaIter src, int srcRowBytes,
                                  int sw, int sh) {
    int x;
    while (--sh >= 0) {
        AlphaIter rowSrc(src);
        for (x = sw - 1; x >= 0; --x) {
            int srcValue = *rowSrc;
            if (srcValue) {
                *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - srcValue)));
            }
            ++dst;
            ++rowSrc;
        }
        dst += dstRowBytes - sw;
        src >>= srcRowBytes;
    }
}
///////////////////////////////////////////////////////////////////////////////

// we use a local function to wrap the class static method to work around
// a bug in gcc98
void SkMask_FreeImage(uint8_t* image);
void SkMask_FreeImage(uint8_t* image) {
    SkMask::FreeImage(image);
}

bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src, SkScalar sigma, SkBlurStyle style,
                         SkIPoint* margin) {
    if (src.fFormat != SkMask::kBW_Format &&
        src.fFormat != SkMask::kA8_Format &&
        src.fFormat != SkMask::kARGB32_Format &&
        src.fFormat != SkMask::kLCD16_Format)
    {
        return false;
    }

    SkMaskBlurFilter blurFilter{sigma, sigma};
    if (blurFilter.hasNoBlur()) {
        // If there is no effective blur most styles will just produce the original mask.
        // However, kOuter_SkBlurStyle will produce an empty mask.
        if (style == kOuter_SkBlurStyle) {
            dst->fImage = nullptr;
            dst->fBounds = SkIRect::MakeEmpty();
            dst->fRowBytes = dst->fBounds.width();
            dst->fFormat = SkMask::kA8_Format;
            if (margin != nullptr) {
                // This filter will disregard the src.fImage completely.
                // The margin is actually {-(src.fBounds.width() / 2), -(src.fBounds.height() / 2)}
                // but it is not clear if callers will fall over with negative margins.
                *margin = SkIPoint{0,0};
            }
            return true;
        }
        return false;
    }
    const SkIPoint border = blurFilter.blur(src, dst);
    // If src.fImage is null, then this call is only to calculate the border.
    if (src.fImage != nullptr && dst->fImage == nullptr) {
        return false;
    }

    if (margin != nullptr) {
        *margin = border;
    }

    if (src.fImage == nullptr) {
        if (style == kInner_SkBlurStyle) {
            dst->fBounds = src.fBounds; // restore trimmed bounds
            dst->fRowBytes = dst->fBounds.width();
        }
        return true;
    }

    switch (style) {
        case kNormal_SkBlurStyle:
            break;
        case kSolid_SkBlurStyle: {
            auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes];
            switch (src.fFormat) {
                case SkMask::kBW_Format:
                    clamp_solid_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                    break;
                case SkMask::kA8_Format:
                    clamp_solid_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                    break;
                case SkMask::kARGB32_Format: {
                    uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage);
                    clamp_solid_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                } break;
                case SkMask::kLCD16_Format: {
                    uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage);
                    clamp_solid_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                } break;
                default:
                    SK_ABORT("Unhandled format.");
            };
        } break;
        case kOuter_SkBlurStyle: {
            auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes];
            switch (src.fFormat) {
                case SkMask::kBW_Format:
                    clamp_outer_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                    break;
                case SkMask::kA8_Format:
                    clamp_outer_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                    break;
                case SkMask::kARGB32_Format: {
                    uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage);
                    clamp_outer_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                } break;
                case SkMask::kLCD16_Format: {
                    uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage);
                    clamp_outer_with_orig(
                            dstStart, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                } break;
                default:
                    SK_ABORT("Unhandled format.");
            };
        } break;
        case kInner_SkBlurStyle: {
            // now we allocate the "real" dst, mirror the size of src
            SkMask blur = *dst;
            SkAutoMaskFreeImage autoFreeBlurMask(blur.fImage);
            dst->fBounds = src.fBounds;
            dst->fRowBytes = dst->fBounds.width();
            size_t dstSize = dst->computeImageSize();
            if (0 == dstSize) {
                return false;   // too big to allocate, abort
            }
            dst->fImage = SkMask::AllocImage(dstSize);
            auto blurStart = &blur.fImage[border.x() + border.y() * blur.fRowBytes];
            switch (src.fFormat) {
                case SkMask::kBW_Format:
                    merge_src_with_blur(
                            dst->fImage, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes,
                            blurStart, blur.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                    break;
                case SkMask::kA8_Format:
                    merge_src_with_blur(
                            dst->fImage, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes,
                            blurStart, blur.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                    break;
                case SkMask::kARGB32_Format: {
                    uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage);
                    merge_src_with_blur(
                            dst->fImage, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes,
                            blurStart, blur.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                } break;
                case SkMask::kLCD16_Format: {
                    uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage);
                    merge_src_with_blur(
                            dst->fImage, dst->fRowBytes,
                            SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes,
                            blurStart, blur.fRowBytes,
                            src.fBounds.width(), src.fBounds.height());
                } break;
                default:
                    SK_ABORT("Unhandled format.");
            };
        } break;
    }

    return true;
}

/* Convolving a box with itself three times results in a piecewise
   quadratic function:

   0                              x <= -1.5
   9/8 + 3/2 x + 1/2 x^2   -1.5 < x <= -.5
   3/4 - x^2                -.5 < x <= .5
   9/8 - 3/2 x + 1/2 x^2    0.5 < x <= 1.5
   0                        1.5 < x

   Mathematica:

   g[x_] := Piecewise [ {
     {9/8 + 3/2 x + 1/2 x^2 ,  -1.5 < x <= -.5},
     {3/4 - x^2             ,   -.5 < x <= .5},
     {9/8 - 3/2 x + 1/2 x^2 ,   0.5 < x <= 1.5}
   }, 0]

   To get the profile curve of the blurred step function at the rectangle
   edge, we evaluate the indefinite integral, which is piecewise cubic:

   0                                        x <= -1.5
   9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3   -1.5 < x <= -0.5
   1/2 + 3/4 x - 1/3 x^3              -.5 < x <= .5
   7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3     .5 < x <= 1.5
   1                                  1.5 < x

   in Mathematica code:

   gi[x_] := Piecewise[ {
     { 0 , x <= -1.5 },
     { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 },
     { 1/2 + 3/4 x - 1/3 x^3          ,  -.5 < x <= .5},
     { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3,   .5 < x <= 1.5}
   },1]
*/

static float gaussianIntegral(float x) {
    if (x > 1.5f) {
        return 0.0f;
    }
    if (x < -1.5f) {
        return 1.0f;
    }

    float x2 = x*x;
    float x3 = x2*x;

    if ( x > 0.5f ) {
        return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x);
    }
    if ( x > -0.5f ) {
        return 0.5f - (0.75f * x - x3 / 3.0f);
    }
    return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x);
}

/*  ComputeBlurProfile fills in an array of floating
    point values between 0 and 255 for the profile signature of
    a blurred half-plane with the given blur radius.  Since we're
    going to be doing screened multiplications (i.e., 1 - (1-x)(1-y))
    all the time, we actually fill in the profile pre-inverted
    (already done 255-x).
*/

void SkBlurMask::ComputeBlurProfile(uint8_t* profile, int size, SkScalar sigma) {
    SkASSERT(SkScalarCeilToInt(6*sigma) == size);

    int center = size >> 1;

    float invr = 1.f/(2*sigma);

    profile[0] = 255;
    for (int x = 1 ; x < size ; ++x) {
        float scaled_x = (center - x - .5f) * invr;
        float gi = gaussianIntegral(scaled_x);
        profile[x] = 255 - (uint8_t) (255.f * gi);
    }
}

// TODO MAYBE: Maintain a profile cache to avoid recomputing this for
// commonly used radii.  Consider baking some of the most common blur radii
// directly in as static data?

// Implementation adapted from Michael Herf's approach:
// http://stereopsis.com/shadowrect/

uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc,
                                  int blurredWidth, int sharpWidth) {
    // how far are we from the original edge?
    int dx = SkAbs32(((loc << 1) + 1) - blurredWidth) - sharpWidth;
    int ox = dx >> 1;
    if (ox < 0) {
        ox = 0;
    }

    return profile[ox];
}

void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile,
                                        unsigned int width, SkScalar sigma) {

    unsigned int profile_size = SkScalarCeilToInt(6*sigma);
    SkAutoTMalloc<uint8_t> horizontalScanline(width);

    unsigned int sw = width - profile_size;
    // nearest odd number less than the profile size represents the center
    // of the (2x scaled) profile
    int center = ( profile_size & ~1 ) - 1;

    int w = sw - center;

    for (unsigned int x = 0 ; x < width ; ++x) {
       if (profile_size <= sw) {
           pixels[x] = ProfileLookup(profile, x, width, w);
       } else {
           float span = float(sw)/(2*sigma);
           float giX = 1.5f - (x+.5f)/(2*sigma);
           pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span)));
       }
    }
}

bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst,
                          const SkRect &src, SkBlurStyle style,
                          SkIPoint *margin, SkMask::CreateMode createMode) {
    int profileSize = SkScalarCeilToInt(6*sigma);
    if (profileSize <= 0) {
        return false;   // no blur to compute
    }

    int pad = profileSize/2;
    if (margin) {
        margin->set( pad, pad );
    }

    dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad),
                     SkScalarRoundToInt(src.fTop - pad),
                     SkScalarRoundToInt(src.fRight + pad),
                     SkScalarRoundToInt(src.fBottom + pad));

    dst->fRowBytes = dst->fBounds.width();
    dst->fFormat = SkMask::kA8_Format;
    dst->fImage = nullptr;

    int             sw = SkScalarFloorToInt(src.width());
    int             sh = SkScalarFloorToInt(src.height());

    if (createMode == SkMask::kJustComputeBounds_CreateMode) {
        if (style == kInner_SkBlurStyle) {
            dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
                             SkScalarRoundToInt(src.fTop),
                             SkScalarRoundToInt(src.fRight),
                             SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
            dst->fRowBytes = sw;
        }
        return true;
    }

    SkAutoTMalloc<uint8_t> profile(profileSize);

    ComputeBlurProfile(profile, profileSize, sigma);

    size_t dstSize = dst->computeImageSize();
    if (0 == dstSize) {
        return false;   // too big to allocate, abort
    }

    uint8_t*        dp = SkMask::AllocImage(dstSize);

    dst->fImage = dp;

    int dstHeight = dst->fBounds.height();
    int dstWidth = dst->fBounds.width();

    uint8_t *outptr = dp;

    SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth);
    SkAutoTMalloc<uint8_t> verticalScanline(dstHeight);

    ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma);
    ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma);

    for (int y = 0 ; y < dstHeight ; ++y) {
        for (int x = 0 ; x < dstWidth ; x++) {
            unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]);
            *(outptr++) = maskval;
        }
    }

    if (style == kInner_SkBlurStyle) {
        // now we allocate the "real" dst, mirror the size of src
        size_t srcSize = (size_t)(src.width() * src.height());
        if (0 == srcSize) {
            return false;   // too big to allocate, abort
        }
        dst->fImage = SkMask::AllocImage(srcSize);
        for (int y = 0 ; y < sh ; y++) {
            uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad;
            uint8_t *inner_scanline = dst->fImage + y*sw;
            memcpy(inner_scanline, blur_scanline, sw);
        }
        SkMask::FreeImage(dp);

        dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
                         SkScalarRoundToInt(src.fTop),
                         SkScalarRoundToInt(src.fRight),
                         SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
        dst->fRowBytes = sw;

    } else if (style == kOuter_SkBlurStyle) {
        for (int y = pad ; y < dstHeight-pad ; y++) {
            uint8_t *dst_scanline = dp + y*dstWidth + pad;
            memset(dst_scanline, 0, sw);
        }
    } else if (style == kSolid_SkBlurStyle) {
        for (int y = pad ; y < dstHeight-pad ; y++) {
            uint8_t *dst_scanline = dp + y*dstWidth + pad;
            memset(dst_scanline, 0xff, sw);
        }
    }
    // normal and solid styles are the same for analytic rect blurs, so don't
    // need to handle solid specially.

    return true;
}

bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst,
                           const SkRRect &src, SkBlurStyle style,
                           SkIPoint *margin, SkMask::CreateMode createMode) {
    // Temporary for now -- always fail, should cause caller to fall back
    // to old path.  Plumbing just to land API and parallelize effort.

    return false;
}

// The "simple" blur is a direct implementation of separable convolution with a discrete
// gaussian kernel.  It's "ground truth" in a sense; too slow to be used, but very
// useful for correctness comparisons.

bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src,
                                 SkBlurStyle style, SkIPoint* margin) {

    if (src.fFormat != SkMask::kA8_Format) {
        return false;
    }

    float variance = sigma * sigma;

    int windowSize = SkScalarCeilToInt(sigma*6);
    // round window size up to nearest odd number
    windowSize |= 1;

    SkAutoTMalloc<float> gaussWindow(windowSize);

    int halfWindow = windowSize >> 1;

    gaussWindow[halfWindow] = 1;

    float windowSum = 1;
    for (int x = 1 ; x <= halfWindow ; ++x) {
        float gaussian = expf(-x*x / (2*variance));
        gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian;
        windowSum += 2*gaussian;
    }

    // leave the filter un-normalized for now; we will divide by the normalization
    // sum later;

    int pad = halfWindow;
    if (margin) {
        margin->set( pad, pad );
    }

    dst->fBounds = src.fBounds;
    dst->fBounds.outset(pad, pad);

    dst->fRowBytes = dst->fBounds.width();
    dst->fFormat = SkMask::kA8_Format;
    dst->fImage = nullptr;

    if (src.fImage) {

        size_t dstSize = dst->computeImageSize();
        if (0 == dstSize) {
            return false;   // too big to allocate, abort
        }

        int             srcWidth = src.fBounds.width();
        int             srcHeight = src.fBounds.height();
        int             dstWidth = dst->fBounds.width();

        const uint8_t*  srcPixels = src.fImage;
        uint8_t*        dstPixels = SkMask::AllocImage(dstSize);
        SkAutoMaskFreeImage autoFreeDstPixels(dstPixels);

        // do the actual blur.  First, make a padded copy of the source.
        // use double pad so we never have to check if we're outside anything

        int padWidth = srcWidth + 4*pad;
        int padHeight = srcHeight;
        int padSize = padWidth * padHeight;

        SkAutoTMalloc<uint8_t> padPixels(padSize);
        memset(padPixels, 0, padSize);

        for (int y = 0 ; y < srcHeight; ++y) {
            uint8_t* padptr = padPixels + y * padWidth + 2*pad;
            const uint8_t* srcptr = srcPixels + y * srcWidth;
            memcpy(padptr, srcptr, srcWidth);
        }

        // blur in X, transposing the result into a temporary floating point buffer.
        // also double-pad the intermediate result so that the second blur doesn't
        // have to do extra conditionals.

        int tmpWidth = padHeight + 4*pad;
        int tmpHeight = padWidth - 2*pad;
        int tmpSize = tmpWidth * tmpHeight;

        SkAutoTMalloc<float> tmpImage(tmpSize);
        memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0]));

        for (int y = 0 ; y < padHeight ; ++y) {
            uint8_t *srcScanline = padPixels + y*padWidth;
            for (int x = pad ; x < padWidth - pad ; ++x) {
                float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output
                uint8_t *windowCenter = srcScanline + x;
                for (int i = -pad ; i <= pad ; ++i) {
                    *outPixel += gaussWindow[pad+i]*windowCenter[i];
                }
                *outPixel /= windowSum;
            }
        }

        // blur in Y; now filling in the actual desired destination.  We have to do
        // the transpose again; these transposes guarantee that we read memory in
        // linear order.

        for (int y = 0 ; y < tmpHeight ; ++y) {
            float *srcScanline = tmpImage + y*tmpWidth;
            for (int x = pad ; x < tmpWidth - pad ; ++x) {
                float *windowCenter = srcScanline + x;
                float finalValue = 0;
                for (int i = -pad ; i <= pad ; ++i) {
                    finalValue += gaussWindow[pad+i]*windowCenter[i];
                }
                finalValue /= windowSum;
                uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output
                int integerPixel = int(finalValue + 0.5f);
                *outPixel = SkClampMax( SkClampPos(integerPixel), 255 );
            }
        }

        dst->fImage = dstPixels;
        switch (style) {
            case kNormal_SkBlurStyle:
                break;
            case kSolid_SkBlurStyle: {
                clamp_solid_with_orig(
                        dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes,
                        SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes,
                        srcWidth, srcHeight);
            } break;
            case kOuter_SkBlurStyle: {
                clamp_outer_with_orig(
                        dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes,
                        SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes,
                        srcWidth, srcHeight);
            } break;
            case kInner_SkBlurStyle: {
                // now we allocate the "real" dst, mirror the size of src
                size_t srcSize = src.computeImageSize();
                if (0 == srcSize) {
                    return false;   // too big to allocate, abort
                }
                dst->fImage = SkMask::AllocImage(srcSize);
                merge_src_with_blur(dst->fImage, src.fRowBytes,
                    SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes,
                    dstPixels + pad*dst->fRowBytes + pad,
                    dst->fRowBytes, srcWidth, srcHeight);
                SkMask::FreeImage(dstPixels);
            } break;
        };
        autoFreeDstPixels.release();
    }

    if (style == kInner_SkBlurStyle) {
        dst->fBounds = src.fBounds; // restore trimmed bounds
        dst->fRowBytes = src.fRowBytes;
    }

    return true;
}