1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
#include "SkBitmapScaler.h"
#include "SkBitmapFilter.h"
#include "SkRect.h"
#include "SkTArray.h"
#include "SkErrorInternals.h"
#include "SkConvolver.h"
// SkResizeFilter ----------------------------------------------------------------
// Encapsulates computation and storage of the filters required for one complete
// resize operation.
class SkResizeFilter {
public:
SkResizeFilter(SkBitmapScaler::ResizeMethod method,
int srcFullWidth, int srcFullHeight,
int destWidth, int destHeight,
const SkIRect& destSubset,
const SkConvolutionProcs& convolveProcs);
~SkResizeFilter() {
SkDELETE( fBitmapFilter );
}
// Returns the filled filter values.
const SkConvolutionFilter1D& xFilter() { return fXFilter; }
const SkConvolutionFilter1D& yFilter() { return fYFilter; }
private:
SkBitmapFilter* fBitmapFilter;
// Computes one set of filters either horizontally or vertically. The caller
// will specify the "min" and "max" rather than the bottom/top and
// right/bottom so that the same code can be re-used in each dimension.
//
// |srcDependLo| and |srcDependSize| gives the range for the source
// depend rectangle (horizontally or vertically at the caller's discretion
// -- see above for what this means).
//
// Likewise, the range of destination values to compute and the scale factor
// for the transform is also specified.
void computeFilters(int srcSize,
int destSubsetLo, int destSubsetSize,
float scale,
SkConvolutionFilter1D* output,
const SkConvolutionProcs& convolveProcs);
SkConvolutionFilter1D fXFilter;
SkConvolutionFilter1D fYFilter;
};
SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
int srcFullWidth, int srcFullHeight,
int destWidth, int destHeight,
const SkIRect& destSubset,
const SkConvolutionProcs& convolveProcs) {
// method will only ever refer to an "algorithm method".
SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
(method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
switch(method) {
case SkBitmapScaler::RESIZE_BOX:
fBitmapFilter = SkNEW(SkBoxFilter);
break;
case SkBitmapScaler::RESIZE_TRIANGLE:
fBitmapFilter = SkNEW(SkTriangleFilter);
break;
case SkBitmapScaler::RESIZE_MITCHELL:
fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
break;
case SkBitmapScaler::RESIZE_HAMMING:
fBitmapFilter = SkNEW(SkHammingFilter);
break;
case SkBitmapScaler::RESIZE_LANCZOS3:
fBitmapFilter = SkNEW(SkLanczosFilter);
break;
default:
// NOTREACHED:
fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
break;
}
float scaleX = static_cast<float>(destWidth) /
static_cast<float>(srcFullWidth);
float scaleY = static_cast<float>(destHeight) /
static_cast<float>(srcFullHeight);
this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
scaleX, &fXFilter, convolveProcs);
if (srcFullWidth == srcFullHeight &&
destSubset.fLeft == destSubset.fTop &&
destSubset.width() == destSubset.height()&&
scaleX == scaleY) {
fYFilter = fXFilter;
} else {
this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
scaleY, &fYFilter, convolveProcs);
}
}
// TODO(egouriou): Take advantage of periods in the convolution.
// Practical resizing filters are periodic outside of the border area.
// For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
// source become p pixels in the destination) will have a period of p.
// A nice consequence is a period of 1 when downscaling by an integral
// factor. Downscaling from typical display resolutions is also bound
// to produce interesting periods as those are chosen to have multiple
// small factors.
// Small periods reduce computational load and improve cache usage if
// the coefficients can be shared. For periods of 1 we can consider
// loading the factors only once outside the borders.
void SkResizeFilter::computeFilters(int srcSize,
int destSubsetLo, int destSubsetSize,
float scale,
SkConvolutionFilter1D* output,
const SkConvolutionProcs& convolveProcs) {
int destSubsetHi = destSubsetLo + destSubsetSize; // [lo, hi)
// When we're doing a magnification, the scale will be larger than one. This
// means the destination pixels are much smaller than the source pixels, and
// that the range covered by the filter won't necessarily cover any source
// pixel boundaries. Therefore, we use these clamped values (max of 1) for
// some computations.
float clampedScale = SkTMin(1.0f, scale);
// This is how many source pixels from the center we need to count
// to support the filtering function.
float srcSupport = fBitmapFilter->width() / clampedScale;
// Speed up the divisions below by turning them into multiplies.
float invScale = 1.0f / scale;
SkTArray<float> filterValues(64);
SkTArray<short> fixedFilterValues(64);
// Loop over all pixels in the output range. We will generate one set of
// filter values for each one. Those values will tell us how to blend the
// source pixels to compute the destination pixel.
for (int destSubsetI = destSubsetLo; destSubsetI < destSubsetHi;
destSubsetI++) {
// Reset the arrays. We don't declare them inside so they can re-use the
// same malloc-ed buffer.
filterValues.reset();
fixedFilterValues.reset();
// This is the pixel in the source directly under the pixel in the dest.
// Note that we base computations on the "center" of the pixels. To see
// why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
// downscale should "cover" the pixels around the pixel with *its center*
// at coordinates (2.5, 2.5) in the source, not those around (0, 0).
// Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
// Compute the (inclusive) range of source pixels the filter covers.
int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
// Compute the unnormalized filter value at each location of the source
// it covers.
float filterSum = 0.0f; // Sub of the filter values for normalizing.
for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
curFilterPixel++) {
// Distance from the center of the filter, this is the filter coordinate
// in source space. We also need to consider the center of the pixel
// when comparing distance against 'srcPixel'. In the 5x downscale
// example used above the distance from the center of the filter to
// the pixel with coordinates (2, 2) should be 0, because its center
// is at (2.5, 2.5).
float srcFilterDist =
((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
// Since the filter really exists in dest space, map it there.
float destFilterDist = srcFilterDist * clampedScale;
// Compute the filter value at that location.
float filterValue = fBitmapFilter->evaluate(destFilterDist);
filterValues.push_back(filterValue);
filterSum += filterValue;
}
SkASSERT(!filterValues.empty());
// The filter must be normalized so that we don't affect the brightness of
// the image. Convert to normalized fixed point.
short fixedSum = 0;
for (int i = 0; i < filterValues.count(); i++) {
short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
fixedSum += curFixed;
fixedFilterValues.push_back(curFixed);
}
// The conversion to fixed point will leave some rounding errors, which
// we add back in to avoid affecting the brightness of the image. We
// arbitrarily add this to the center of the filter array (this won't always
// be the center of the filter function since it could get clipped on the
// edges, but it doesn't matter enough to worry about that case).
short leftovers = output->FloatToFixed(1.0f) - fixedSum;
fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
// Now it's ready to go.
output->AddFilter(srcBegin, &fixedFilterValues[0],
static_cast<int>(fixedFilterValues.count()));
}
if (convolveProcs.fApplySIMDPadding) {
convolveProcs.fApplySIMDPadding( output );
}
}
static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
SkBitmapScaler::ResizeMethod method) {
// Convert any "Quality Method" into an "Algorithm Method"
if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
return method;
}
// The call to SkBitmapScalerGtv::Resize() above took care of
// GPU-acceleration in the cases where it is possible. So now we just
// pick the appropriate software method for each resize quality.
switch (method) {
// Users of RESIZE_GOOD are willing to trade a lot of quality to
// get speed, allowing the use of linear resampling to get hardware
// acceleration (SRB). Hence any of our "good" software filters
// will be acceptable, so we use a triangle.
case SkBitmapScaler::RESIZE_GOOD:
return SkBitmapScaler::RESIZE_TRIANGLE;
// Users of RESIZE_BETTER are willing to trade some quality in order
// to improve performance, but are guaranteed not to devolve to a linear
// resampling. In visual tests we see that Hamming-1 is not as good as
// Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
// about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
// an acceptable trade-off between quality and speed.
case SkBitmapScaler::RESIZE_BETTER:
return SkBitmapScaler::RESIZE_HAMMING;
default:
#ifdef SK_HIGH_QUALITY_IS_LANCZOS
return SkBitmapScaler::RESIZE_LANCZOS3;
#else
return SkBitmapScaler::RESIZE_MITCHELL;
#endif
}
}
// static
bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
const SkBitmap& source,
ResizeMethod method,
int destWidth, int destHeight,
const SkIRect& destSubset,
const SkConvolutionProcs& convolveProcs,
SkBitmap::Allocator* allocator) {
// Ensure that the ResizeMethod enumeration is sound.
SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
(method <= RESIZE_LAST_QUALITY_METHOD)) ||
((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
(method <= RESIZE_LAST_ALGORITHM_METHOD)));
SkIRect dest = { 0, 0, destWidth, destHeight };
if (!dest.contains(destSubset)) {
SkErrorInternals::SetError( kInvalidArgument_SkError,
"Sorry, you passed me a bitmap resize "
" method I have never heard of: %d",
method );
}
// If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
// return empty.
if (source.width() < 1 || source.height() < 1 ||
destWidth < 1 || destHeight < 1) {
// todo: seems like we could handle negative dstWidth/Height, since that
// is just a negative scale (flip)
return false;
}
method = ResizeMethodToAlgorithmMethod(method);
// Check that we deal with an "algorithm methods" from this point onward.
SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
(method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
SkAutoLockPixels locker(source);
if (!source.readyToDraw() ||
source.colorType() != kPMColor_SkColorType) {
return false;
}
SkResizeFilter filter(method, source.width(), source.height(),
destWidth, destHeight, destSubset, convolveProcs);
// Get a source bitmap encompassing this touched area. We construct the
// offsets and row strides such that it looks like a new bitmap, while
// referring to the old data.
const unsigned char* sourceSubset =
reinterpret_cast<const unsigned char*>(source.getPixels());
// Convolve into the result.
SkBitmap result;
result.setConfig(SkImageInfo::MakeN32(destSubset.width(),
destSubset.height(),
source.alphaType()));
result.allocPixels(allocator, NULL);
if (!result.readyToDraw()) {
return false;
}
BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
!source.isOpaque(), filter.xFilter(), filter.yFilter(),
static_cast<int>(result.rowBytes()),
static_cast<unsigned char*>(result.getPixels()),
convolveProcs, true);
*resultPtr = result;
resultPtr->lockPixels();
SkASSERT(NULL != resultPtr->getPixels());
return true;
}
// static
bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
const SkBitmap& source,
ResizeMethod method,
int destWidth, int destHeight,
const SkConvolutionProcs& convolveProcs,
SkBitmap::Allocator* allocator) {
SkIRect destSubset = { 0, 0, destWidth, destHeight };
return Resize(resultPtr, source, method, destWidth, destHeight, destSubset,
convolveProcs, allocator);
}
|