1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
/*
* Copyright 2008 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// The copyright below was added in 2009, but I see no record of moto contributions...?
/* NEON optimized code (C) COPYRIGHT 2009 Motorola
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkPerspIter.h"
#include "SkShader.h"
#include "SkUtils.h"
#include "SkUtilsArm.h"
#include "SkBitmapProcState_utils.h"
/* returns 0...(n-1) given any x (positive or negative).
As an example, if n (which is always positive) is 5...
x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3
*/
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count);
void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count);
#include "SkBitmapProcState_matrix_template.h"
///////////////////////////////////////////////////////////////////////////////
// Compile neon code paths if needed
#if !SK_ARM_NEON_IS_NONE
// These are defined in src/opts/SkBitmapProcState_matrixProcs_neon.cpp
extern const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs_neon[];
extern const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs_neon[];
#endif // !SK_ARM_NEON_IS_NONE
// Compile non-neon code path if needed
#if !SK_ARM_NEON_IS_ALWAYS
#define MAKENAME(suffix) ClampX_ClampY ## suffix
#define TILEX_PROCF(fx, max) SkClampMax((fx) >> 16, max)
#define TILEY_PROCF(fy, max) SkClampMax((fy) >> 16, max)
#define TILEX_LOW_BITS(fx, max) (((fx) >> 12) & 0xF)
#define TILEY_LOW_BITS(fy, max) (((fy) >> 12) & 0xF)
#define CHECK_FOR_DECAL
#include "SkBitmapProcState_matrix.h"
struct ClampTileProcs {
static unsigned X(const SkBitmapProcState&, SkFixed fx, int max) {
return SkClampMax(fx >> 16, max);
}
static unsigned Y(const SkBitmapProcState&, SkFixed fy, int max) {
return SkClampMax(fy >> 16, max);
}
};
// Referenced in opts_check_x86.cpp
void ClampX_ClampY_nofilter_scale(const SkBitmapProcState& s, uint32_t xy[],
int count, int x, int y) {
return NoFilterProc_Scale<ClampTileProcs, true>(s, xy, count, x, y);
}
void ClampX_ClampY_nofilter_affine(const SkBitmapProcState& s, uint32_t xy[],
int count, int x, int y) {
return NoFilterProc_Affine<ClampTileProcs>(s, xy, count, x, y);
}
static SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
// only clamp lives in the right coord space to check for decal
ClampX_ClampY_nofilter_scale,
ClampX_ClampY_filter_scale,
ClampX_ClampY_nofilter_affine,
ClampX_ClampY_filter_affine,
NoFilterProc_Persp<ClampTileProcs>,
ClampX_ClampY_filter_persp
};
#define MAKENAME(suffix) RepeatX_RepeatY ## suffix
#define TILEX_PROCF(fx, max) SK_USHIFT16((unsigned)((fx) & 0xFFFF) * ((max) + 1))
#define TILEY_PROCF(fy, max) SK_USHIFT16((unsigned)((fy) & 0xFFFF) * ((max) + 1))
#define TILEX_LOW_BITS(fx, max) (((unsigned)((fx) & 0xFFFF) * ((max) + 1) >> 12) & 0xF)
#define TILEY_LOW_BITS(fy, max) (((unsigned)((fy) & 0xFFFF) * ((max) + 1) >> 12) & 0xF)
#include "SkBitmapProcState_matrix.h"
struct RepeatTileProcs {
static unsigned X(const SkBitmapProcState&, SkFixed fx, int max) {
SkASSERT(max < 65535);
return SK_USHIFT16((unsigned)((fx) & 0xFFFF) * ((max) + 1));
}
static unsigned Y(const SkBitmapProcState&, SkFixed fy, int max) {
SkASSERT(max < 65535);
return SK_USHIFT16((unsigned)((fy) & 0xFFFF) * ((max) + 1));
}
};
static SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
NoFilterProc_Scale<RepeatTileProcs, false>,
RepeatX_RepeatY_filter_scale,
NoFilterProc_Affine<RepeatTileProcs>,
RepeatX_RepeatY_filter_affine,
NoFilterProc_Persp<RepeatTileProcs>,
RepeatX_RepeatY_filter_persp
};
#endif
#define MAKENAME(suffix) GeneralXY ## suffix
#define PREAMBLE(state) SkBitmapProcState::FixedTileProc tileProcX = (state).fTileProcX; (void) tileProcX; \
SkBitmapProcState::FixedTileProc tileProcY = (state).fTileProcY; (void) tileProcY; \
SkBitmapProcState::FixedTileLowBitsProc tileLowBitsProcX = (state).fTileLowBitsProcX; (void) tileLowBitsProcX; \
SkBitmapProcState::FixedTileLowBitsProc tileLowBitsProcY = (state).fTileLowBitsProcY; (void) tileLowBitsProcY
#define PREAMBLE_PARAM_X , SkBitmapProcState::FixedTileProc tileProcX, SkBitmapProcState::FixedTileLowBitsProc tileLowBitsProcX
#define PREAMBLE_PARAM_Y , SkBitmapProcState::FixedTileProc tileProcY, SkBitmapProcState::FixedTileLowBitsProc tileLowBitsProcY
#define PREAMBLE_ARG_X , tileProcX, tileLowBitsProcX
#define PREAMBLE_ARG_Y , tileProcY, tileLowBitsProcY
#define TILEX_PROCF(fx, max) SK_USHIFT16(tileProcX(fx) * ((max) + 1))
#define TILEY_PROCF(fy, max) SK_USHIFT16(tileProcY(fy) * ((max) + 1))
#define TILEX_LOW_BITS(fx, max) tileLowBitsProcX(fx, (max) + 1)
#define TILEY_LOW_BITS(fy, max) tileLowBitsProcY(fy, (max) + 1)
#include "SkBitmapProcState_matrix.h"
struct GeneralTileProcs {
static unsigned X(const SkBitmapProcState& s, SkFixed fx, int max) {
return SK_USHIFT16(s.fTileProcX(fx) * ((max) + 1));
}
static unsigned Y(const SkBitmapProcState& s, SkFixed fy, int max) {
return SK_USHIFT16(s.fTileProcY(fy) * ((max) + 1));
}
};
static SkBitmapProcState::MatrixProc GeneralXY_Procs[] = {
NoFilterProc_Scale<GeneralTileProcs, false>,
GeneralXY_filter_scale,
NoFilterProc_Affine<GeneralTileProcs>,
GeneralXY_filter_affine,
NoFilterProc_Persp<GeneralTileProcs>,
GeneralXY_filter_persp
};
///////////////////////////////////////////////////////////////////////////////
static inline U16CPU fixed_clamp(SkFixed x) {
if (x < 0) {
x = 0;
}
if (x >> 16) {
x = 0xFFFF;
}
return x;
}
static inline U16CPU fixed_repeat(SkFixed x) {
return x & 0xFFFF;
}
static inline U16CPU fixed_mirror(SkFixed x) {
SkFixed s = SkLeftShift(x, 15) >> 31;
// s is FFFFFFFF if we're on an odd interval, or 0 if an even interval
return (x ^ s) & 0xFFFF;
}
static SkBitmapProcState::FixedTileProc choose_tile_proc(unsigned m) {
if (SkShader::kClamp_TileMode == m) {
return fixed_clamp;
}
if (SkShader::kRepeat_TileMode == m) {
return fixed_repeat;
}
SkASSERT(SkShader::kMirror_TileMode == m);
return fixed_mirror;
}
static inline U16CPU fixed_clamp_lowbits(SkFixed x, int) {
return (x >> 12) & 0xF;
}
static inline U16CPU fixed_repeat_or_mirrow_lowbits(SkFixed x, int scale) {
return ((x * scale) >> 12) & 0xF;
}
static SkBitmapProcState::FixedTileLowBitsProc choose_tile_lowbits_proc(unsigned m) {
if (SkShader::kClamp_TileMode == m) {
return fixed_clamp_lowbits;
} else {
SkASSERT(SkShader::kMirror_TileMode == m ||
SkShader::kRepeat_TileMode == m);
// mirror and repeat have the same behavior for the low bits.
return fixed_repeat_or_mirrow_lowbits;
}
}
static inline U16CPU int_clamp(int x, int n) {
if (x >= n) {
x = n - 1;
}
if (x < 0) {
x = 0;
}
return x;
}
static inline U16CPU int_repeat(int x, int n) {
return sk_int_mod(x, n);
}
static inline U16CPU int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
#if 0
static void test_int_tileprocs() {
for (int i = -8; i <= 8; i++) {
SkDebugf(" int_mirror(%2d, 3) = %d\n", i, int_mirror(i, 3));
}
}
#endif
static SkBitmapProcState::IntTileProc choose_int_tile_proc(unsigned tm) {
if (SkShader::kClamp_TileMode == tm)
return int_clamp;
if (SkShader::kRepeat_TileMode == tm)
return int_repeat;
SkASSERT(SkShader::kMirror_TileMode == tm);
return int_mirror;
}
//////////////////////////////////////////////////////////////////////////////
void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
int i;
for (i = (count >> 2); i > 0; --i) {
*dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += dx+dx;
*dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += dx+dx;
}
count &= 3;
uint16_t* xx = (uint16_t*)dst;
for (i = count; i > 0; --i) {
*xx++ = SkToU16(fx >> 16); fx += dx;
}
}
void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
if (count & 1) {
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
while ((count -= 2) >= 0) {
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
}
///////////////////////////////////////////////////////////////////////////////
// stores the same as SCALE, but is cheaper to compute. Also since there is no
// scale, we don't need/have a FILTER version
static void fill_sequential(uint16_t xptr[], int start, int count) {
#if 1
if (reinterpret_cast<intptr_t>(xptr) & 0x2) {
*xptr++ = start++;
count -= 1;
}
if (count > 3) {
uint32_t* xxptr = reinterpret_cast<uint32_t*>(xptr);
uint32_t pattern0 = PACK_TWO_SHORTS(start + 0, start + 1);
uint32_t pattern1 = PACK_TWO_SHORTS(start + 2, start + 3);
start += count & ~3;
int qcount = count >> 2;
do {
*xxptr++ = pattern0;
pattern0 += 0x40004;
*xxptr++ = pattern1;
pattern1 += 0x40004;
} while (--qcount != 0);
xptr = reinterpret_cast<uint16_t*>(xxptr);
count &= 3;
}
while (--count >= 0) {
*xptr++ = start++;
}
#else
for (int i = 0; i < count; i++) {
*xptr++ = start++;
}
#endif
}
static int nofilter_trans_preamble(const SkBitmapProcState& s, uint32_t** xy,
int x, int y) {
const SkBitmapProcStateAutoMapper mapper(s, x, y);
**xy = s.fIntTileProcY(mapper.intY(), s.fPixmap.height());
*xy += 1; // bump the ptr
// return our starting X position
return mapper.intX();
}
static void clampx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int n;
// fill before 0 as needed
if (xpos < 0) {
n = -xpos;
if (n > count) {
n = count;
}
memset(xptr, 0, n * sizeof(uint16_t));
count -= n;
if (0 == count) {
return;
}
xptr += n;
xpos = 0;
}
// fill in 0..width-1 if needed
if (xpos < width) {
n = width - xpos;
if (n > count) {
n = count;
}
fill_sequential(xptr, xpos, n);
count -= n;
if (0 == count) {
return;
}
xptr += n;
}
// fill the remaining with the max value
sk_memset16(xptr, width - 1, count);
}
static void repeatx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int start = sk_int_mod(xpos, width);
int n = width - start;
if (n > count) {
n = count;
}
fill_sequential(xptr, start, n);
xptr += n;
count -= n;
while (count >= width) {
fill_sequential(xptr, 0, width);
xptr += width;
count -= width;
}
if (count > 0) {
fill_sequential(xptr, 0, count);
}
}
static void fill_backwards(uint16_t xptr[], int pos, int count) {
for (int i = 0; i < count; i++) {
SkASSERT(pos >= 0);
xptr[i] = pos--;
}
}
static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
// need to know our start, and our initial phase (forward or backward)
bool forward;
int n;
int start = sk_int_mod(xpos, 2 * width);
if (start >= width) {
start = width + ~(start - width);
forward = false;
n = start + 1; // [start .. 0]
} else {
forward = true;
n = width - start; // [start .. width)
}
if (n > count) {
n = count;
}
if (forward) {
fill_sequential(xptr, start, n);
} else {
fill_backwards(xptr, start, n);
}
forward = !forward;
xptr += n;
count -= n;
while (count >= width) {
if (forward) {
fill_sequential(xptr, 0, width);
} else {
fill_backwards(xptr, width - 1, width);
}
forward = !forward;
xptr += width;
count -= width;
}
if (count > 0) {
if (forward) {
fill_sequential(xptr, 0, count);
} else {
fill_backwards(xptr, width - 1, count);
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool trivial_matrix) {
// test_int_tileprocs();
// check for our special case when there is no scale/affine/perspective
if (trivial_matrix && kNone_SkFilterQuality == fFilterQuality) {
fIntTileProcY = choose_int_tile_proc(fTileModeY);
switch (fTileModeX) {
case SkShader::kClamp_TileMode:
return clampx_nofilter_trans;
case SkShader::kRepeat_TileMode:
return repeatx_nofilter_trans;
case SkShader::kMirror_TileMode:
return mirrorx_nofilter_trans;
}
}
int index = 0;
if (fFilterQuality != kNone_SkFilterQuality) {
index = 1;
}
if (fInvType & SkMatrix::kPerspective_Mask) {
index += 4;
} else if (fInvType & SkMatrix::kAffine_Mask) {
index += 2;
}
if (SkShader::kClamp_TileMode == fTileModeX && SkShader::kClamp_TileMode == fTileModeY) {
// clamp gets special version of filterOne
fFilterOneX = SK_Fixed1;
fFilterOneY = SK_Fixed1;
return SK_ARM_NEON_WRAP(ClampX_ClampY_Procs)[index];
}
// all remaining procs use this form for filterOne
fFilterOneX = SK_Fixed1 / fPixmap.width();
fFilterOneY = SK_Fixed1 / fPixmap.height();
if (SkShader::kRepeat_TileMode == fTileModeX && SkShader::kRepeat_TileMode == fTileModeY) {
return SK_ARM_NEON_WRAP(RepeatX_RepeatY_Procs)[index];
}
fTileProcX = choose_tile_proc(fTileModeX);
fTileProcY = choose_tile_proc(fTileModeY);
fTileLowBitsProcX = choose_tile_lowbits_proc(fTileModeX);
fTileLowBitsProcY = choose_tile_lowbits_proc(fTileModeY);
return GeneralXY_Procs[index];
}
|