aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkBitmapProcState.h
blob: 7d16ba6686063fc889a3a57d748293b434aeefc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright 2007 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkBitmapProcState_DEFINED
#define SkBitmapProcState_DEFINED

#include "SkArenaAlloc.h"
#include "SkBitmap.h"
#include "SkBitmapController.h"
#include "SkBitmapProvider.h"
#include "SkFixed.h"
#include "SkFloatBits.h"
#include "SkMatrixPriv.h"
#include "SkMipMap.h"
#include "SkPaint.h"
#include "SkShader.h"
#include "SkTemplates.h"

typedef SkFixed3232    SkFractionalInt;
#define SkScalarToFractionalInt(x)  SkScalarToFixed3232(x)
#define SkFractionalIntToFixed(x)   SkFixed3232ToFixed(x)
#define SkFixedToFractionalInt(x)   SkFixedToFixed3232(x)
#define SkFractionalIntToInt(x)     SkFixed3232ToInt(x)

class SkPaint;

struct SkBitmapProcInfo {
    SkBitmapProcInfo(const SkBitmapProvider&, SkShader::TileMode tmx, SkShader::TileMode tmy);
    ~SkBitmapProcInfo();

    const SkBitmapProvider        fProvider;

    SkPixmap                      fPixmap;
    SkMatrix                      fInvMatrix;         // This changes based on tile mode.
    // TODO: combine fInvMatrix and fRealInvMatrix.
    SkMatrix                      fRealInvMatrix;     // The actual inverse matrix.
    SkColor                       fPaintColor;
    SkShader::TileMode            fTileModeX;
    SkShader::TileMode            fTileModeY;
    SkFilterQuality               fFilterQuality;
    SkMatrix::TypeMask            fInvType;

    bool init(const SkMatrix& inverse, const SkPaint&);

private:
    enum {
        kBMStateSize = 136  // found by inspection. if too small, we will call new/delete
    };
    SkSTArenaAlloc<kBMStateSize> fAlloc;
    SkBitmapController::State* fBMState;
};

struct SkBitmapProcState : public SkBitmapProcInfo {
    SkBitmapProcState(const SkBitmapProvider& prov, SkShader::TileMode tmx, SkShader::TileMode tmy)
        : SkBitmapProcInfo(prov, tmx, tmy) {}

    bool setup(const SkMatrix& inv, const SkPaint& paint) {
        return this->init(inv, paint) && this->chooseProcs();
    }

    typedef void (*ShaderProc32)(const void* ctx, int x, int y, SkPMColor[], int count);

    typedef void (*ShaderProc16)(const void* ctx, int x, int y, uint16_t[], int count);

    typedef void (*MatrixProc)(const SkBitmapProcState&,
                               uint32_t bitmapXY[],
                               int count,
                               int x, int y);

    typedef void (*SampleProc32)(const SkBitmapProcState&,
                                 const uint32_t[],
                                 int count,
                                 SkPMColor colors[]);

    typedef U16CPU (*FixedTileProc)(SkFixed);   // returns 0..0xFFFF
    typedef U16CPU (*IntTileProc)(int value, int count);   // returns 0..count-1

    SkMatrixPriv::MapXYProc fInvProc;           // chooseProcs
    SkFractionalInt     fInvSxFractionalInt;
    SkFractionalInt     fInvKyFractionalInt;

    FixedTileProc       fTileProcX;         // chooseProcs
    FixedTileProc       fTileProcY;         // chooseProcs
    IntTileProc         fIntTileProcY;      // chooseProcs
    SkFixed             fFilterOneX;
    SkFixed             fFilterOneY;

    SkFixed             fInvSx;             // chooseProcs
    SkFixed             fInvKy;             // chooseProcs
    SkPMColor           fPaintPMColor;      // chooseProcs - A8 config
    uint16_t            fAlphaScale;        // chooseProcs

    /** Platforms implement this, and can optionally overwrite only the
        following fields:

        fShaderProc32
        fShaderProc16
        fMatrixProc
        fSampleProc32
        fSampleProc32

        They will already have valid function pointers, so a platform that does
        not have an accelerated version can just leave that field as is. A valid
        implementation can do nothing (see SkBitmapProcState_opts_none.cpp)
     */
    void platformProcs();

    /** Given the byte size of the index buffer to be passed to the matrix proc,
        return the maximum number of resulting pixels that can be computed
        (i.e. the number of SkPMColor values to be written by the sample proc).
        This routine takes into account that filtering and scale-vs-affine
        affect the amount of buffer space needed.

        Only valid to call after chooseProcs (setContext) has been called. It is
        safe to call this inside the shader's shadeSpan() method.
     */
    int maxCountForBufferSize(size_t bufferSize) const;

    // If a shader proc is present, then the corresponding matrix/sample procs
    // are ignored
    ShaderProc32 getShaderProc32() const { return fShaderProc32; }
    ShaderProc16 getShaderProc16() const { return fShaderProc16; }

#ifdef SK_DEBUG
    MatrixProc getMatrixProc() const;
#else
    MatrixProc getMatrixProc() const { return fMatrixProc; }
#endif
    SampleProc32 getSampleProc32() const { return fSampleProc32; }

private:
    ShaderProc32        fShaderProc32;      // chooseProcs
    ShaderProc16        fShaderProc16;      // chooseProcs
    // These are used if the shaderproc is nullptr
    MatrixProc          fMatrixProc;        // chooseProcs
    SampleProc32        fSampleProc32;      // chooseProcs

    MatrixProc chooseMatrixProc(bool trivial_matrix);
    bool chooseProcs(); // caller must have called init() first (on our base-class)
    bool chooseScanlineProcs(bool trivialMatrix, bool clampClamp);
    ShaderProc32 chooseShaderProc32();

    // Return false if we failed to setup for fast translate (e.g. overflow)
    bool setupForTranslate();

#ifdef SK_DEBUG
    static void DebugMatrixProc(const SkBitmapProcState&,
                                uint32_t[], int count, int x, int y);
#endif
};

/*  Macros for packing and unpacking pairs of 16bit values in a 32bit uint.
    Used to allow access to a stream of uint16_t either one at a time, or
    2 at a time by unpacking a uint32_t
 */
#ifdef SK_CPU_BENDIAN
    #define PACK_TWO_SHORTS(pri, sec) ((pri) << 16 | (sec))
    #define UNPACK_PRIMARY_SHORT(packed)    ((uint32_t)(packed) >> 16)
    #define UNPACK_SECONDARY_SHORT(packed)  ((packed) & 0xFFFF)
#else
    #define PACK_TWO_SHORTS(pri, sec) ((pri) | ((sec) << 16))
    #define UNPACK_PRIMARY_SHORT(packed)    ((packed) & 0xFFFF)
    #define UNPACK_SECONDARY_SHORT(packed)  ((uint32_t)(packed) >> 16)
#endif

#ifdef SK_DEBUG
    static inline uint32_t pack_two_shorts(U16CPU pri, U16CPU sec) {
        SkASSERT((uint16_t)pri == pri);
        SkASSERT((uint16_t)sec == sec);
        return PACK_TWO_SHORTS(pri, sec);
    }
#else
    #define pack_two_shorts(pri, sec)   PACK_TWO_SHORTS(pri, sec)
#endif

// These functions are generated via macros, but are exposed here so that
// platformProcs may test for them by name.
void S32_opaque_D32_filter_DX(const SkBitmapProcState& s, const uint32_t xy[],
                              int count, SkPMColor colors[]);
void S32_alpha_D32_filter_DX(const SkBitmapProcState& s, const uint32_t xy[],
                             int count, SkPMColor colors[]);
void ClampX_ClampY_filter_scale(const SkBitmapProcState& s, uint32_t xy[],
                                int count, int x, int y);
void ClampX_ClampY_nofilter_scale(const SkBitmapProcState& s, uint32_t xy[],
                                  int count, int x, int y);

// Helper class for mapping the middle of pixel (x, y) into SkFractionalInt bitmap space.
// Discussion:
// Overall, this code takes a point in destination space, and uses the center of the pixel
// at (x, y) to determine the sample point in source space. It then adjusts the pixel by different
// amounts based in filtering and tiling.
// This code can be broken into two main cases based on filtering:
// * no filtering (nearest neighbor) - when using nearest neighbor filtering all tile modes reduce
// the sampled by one ulp. If a simple point pt lies precisely on XXX.1/2 then it forced down
// when positive making 1/2 + 1/2 = .999999 instead of 1.0.
// * filtering - in the filtering case, the code calculates the -1/2 shift for starting the
// bilerp kernel. There is a twist; there is a big difference between clamp and the other tile
// modes. In tile and repeat the matrix has been reduced by an additional 1/width and 1/height
// factor. This maps from destination space to [0, 1) (instead of source space) to allow easy
// modulo arithmetic. This means that the -1/2 needed by bilerp is actually 1/2 * 1/width for x
// and 1/2 * 1/height for y. This is what happens when the poorly named fFilterOne{X|Y} is
// divided by two.
class SkBitmapProcStateAutoMapper {
public:
    SkBitmapProcStateAutoMapper(const SkBitmapProcState& s, int x, int y,
                                SkPoint* scalarPoint = nullptr) {
        SkPoint pt;
        s.fInvProc(s.fInvMatrix,
                   SkIntToScalar(x) + SK_ScalarHalf,
                   SkIntToScalar(y) + SK_ScalarHalf, &pt);

        SkFixed biasX, biasY;
        if (s.fFilterQuality == kNone_SkFilterQuality) {
            // SkFixed epsilon bias to ensure inverse-mapped bitmap coordinates are rounded
            // consistently WRT geometry.  Note that we only need the bias for positive scales:
            // for negative scales, the rounding is intrinsically correct.
            // We scale it to persist SkFractionalInt -> SkFixed conversions.
            biasX = (s.fInvMatrix.getScaleX() > 0);
            biasY = (s.fInvMatrix.getScaleY() > 0);
        } else {
            biasX = s.fFilterOneX >> 1;
            biasY = s.fFilterOneY >> 1;
        }

        // punt to unsigned for defined underflow behavior
        fX = (SkFractionalInt)((uint64_t)SkScalarToFractionalInt(pt.x()) -
                               (uint64_t)SkFixedToFractionalInt(biasX));
        fY = (SkFractionalInt)((uint64_t)SkScalarToFractionalInt(pt.y()) -
                               (uint64_t)SkFixedToFractionalInt(biasY));

        if (scalarPoint) {
            scalarPoint->set(pt.x() - SkFixedToScalar(biasX),
                             pt.y() - SkFixedToScalar(biasY));
        }
    }

    SkFractionalInt fractionalIntX() const { return fX; }
    SkFractionalInt fractionalIntY() const { return fY; }

    SkFixed fixedX() const { return SkFractionalIntToFixed(fX); }
    SkFixed fixedY() const { return SkFractionalIntToFixed(fY); }

    int intX() const { return SkFractionalIntToInt(fX); }
    int intY() const { return SkFractionalIntToInt(fY); }

private:
    SkFractionalInt fX, fY;
};

#endif