1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkColorPriv.h"
#include "SkFilterProc.h"
#include "SkPaint.h"
#include "SkShader.h" // for tilemodes
#include "SkUtilsArm.h"
#if !SK_ARM_NEON_IS_NONE
// These are defined in src/opts/SkBitmapProcState_arm_neon.cpp
extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[];
extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*);
extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int);
extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int);
extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*);
extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int);
extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int);
#endif
#if !SK_ARM_NEON_IS_ALWAYS
#define NAME_WRAP(x) x
#include "SkBitmapProcState_filter.h"
#include "SkBitmapProcState_procs.h"
#endif
///////////////////////////////////////////////////////////////////////////////
static bool valid_for_filtering(unsigned dimension) {
// for filtering, width and height must fit in 14bits, since we use steal
// 2 bits from each to store our 4bit subpixel data
return (dimension & ~0x3FFF) == 0;
}
bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) {
if (fOrigBitmap.width() == 0 || fOrigBitmap.height() == 0) {
return false;
}
const SkMatrix* m;
bool trivial_matrix = (inv.getType() & ~SkMatrix::kTranslate_Mask) == 0;
bool clamp_clamp = SkShader::kClamp_TileMode == fTileModeX &&
SkShader::kClamp_TileMode == fTileModeY;
if (clamp_clamp || trivial_matrix) {
m = &inv;
} else {
fUnitInvMatrix = inv;
fUnitInvMatrix.postIDiv(fOrigBitmap.width(), fOrigBitmap.height());
m = &fUnitInvMatrix;
}
fBitmap = &fOrigBitmap;
if (fOrigBitmap.hasMipMap()) {
int shift = fOrigBitmap.extractMipLevel(&fMipBitmap,
SkScalarToFixed(m->getScaleX()),
SkScalarToFixed(m->getSkewY()));
if (shift > 0) {
if (m != &fUnitInvMatrix) {
fUnitInvMatrix = *m;
m = &fUnitInvMatrix;
}
SkScalar scale = SkFixedToScalar(SK_Fixed1 >> shift);
fUnitInvMatrix.postScale(scale, scale);
// now point here instead of fOrigBitmap
fBitmap = &fMipBitmap;
}
}
fInvMatrix = m;
fInvProc = m->getMapXYProc();
fInvType = m->getType();
fInvSx = SkScalarToFixed(m->getScaleX());
fInvSxFractionalInt = SkScalarToFractionalInt(m->getScaleX());
fInvKy = SkScalarToFixed(m->getSkewY());
fInvKyFractionalInt = SkScalarToFractionalInt(m->getSkewY());
fAlphaScale = SkAlpha255To256(paint.getAlpha());
// pick-up filtering from the paint, but only if the matrix is
// more complex than identity/translate (i.e. no need to pay the cost
// of filtering if we're not scaled etc.).
// note: we explicitly check inv, since m might be scaled due to unitinv
// trickery, but we don't want to see that for this test
fDoFilter = paint.isFilterBitmap() &&
(inv.getType() > SkMatrix::kTranslate_Mask &&
valid_for_filtering(fBitmap->width() | fBitmap->height()));
fShaderProc32 = NULL;
fShaderProc16 = NULL;
fSampleProc32 = NULL;
fSampleProc16 = NULL;
fMatrixProc = this->chooseMatrixProc(trivial_matrix);
if (NULL == fMatrixProc) {
return false;
}
///////////////////////////////////////////////////////////////////////
int index = 0;
if (fAlphaScale < 256) { // note: this distinction is not used for D16
index |= 1;
}
if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
index |= 2;
}
if (fDoFilter) {
index |= 4;
}
// bits 3,4,5 encoding the source bitmap format
switch (fBitmap->config()) {
case SkBitmap::kARGB_8888_Config:
index |= 0;
break;
case SkBitmap::kRGB_565_Config:
index |= 8;
break;
case SkBitmap::kIndex8_Config:
index |= 16;
break;
case SkBitmap::kARGB_4444_Config:
index |= 24;
break;
case SkBitmap::kA8_Config:
index |= 32;
fPaintPMColor = SkPreMultiplyColor(paint.getColor());
break;
default:
return false;
}
#if !SK_ARM_NEON_IS_ALWAYS
static const SampleProc32 gSkBitmapProcStateSample32[] = {
S32_opaque_D32_nofilter_DXDY,
S32_alpha_D32_nofilter_DXDY,
S32_opaque_D32_nofilter_DX,
S32_alpha_D32_nofilter_DX,
S32_opaque_D32_filter_DXDY,
S32_alpha_D32_filter_DXDY,
S32_opaque_D32_filter_DX,
S32_alpha_D32_filter_DX,
S16_opaque_D32_nofilter_DXDY,
S16_alpha_D32_nofilter_DXDY,
S16_opaque_D32_nofilter_DX,
S16_alpha_D32_nofilter_DX,
S16_opaque_D32_filter_DXDY,
S16_alpha_D32_filter_DXDY,
S16_opaque_D32_filter_DX,
S16_alpha_D32_filter_DX,
SI8_opaque_D32_nofilter_DXDY,
SI8_alpha_D32_nofilter_DXDY,
SI8_opaque_D32_nofilter_DX,
SI8_alpha_D32_nofilter_DX,
SI8_opaque_D32_filter_DXDY,
SI8_alpha_D32_filter_DXDY,
SI8_opaque_D32_filter_DX,
SI8_alpha_D32_filter_DX,
S4444_opaque_D32_nofilter_DXDY,
S4444_alpha_D32_nofilter_DXDY,
S4444_opaque_D32_nofilter_DX,
S4444_alpha_D32_nofilter_DX,
S4444_opaque_D32_filter_DXDY,
S4444_alpha_D32_filter_DXDY,
S4444_opaque_D32_filter_DX,
S4444_alpha_D32_filter_DX,
// A8 treats alpha/opauqe the same (equally efficient)
SA8_alpha_D32_nofilter_DXDY,
SA8_alpha_D32_nofilter_DXDY,
SA8_alpha_D32_nofilter_DX,
SA8_alpha_D32_nofilter_DX,
SA8_alpha_D32_filter_DXDY,
SA8_alpha_D32_filter_DXDY,
SA8_alpha_D32_filter_DX,
SA8_alpha_D32_filter_DX
};
static const SampleProc16 gSkBitmapProcStateSample16[] = {
S32_D16_nofilter_DXDY,
S32_D16_nofilter_DX,
S32_D16_filter_DXDY,
S32_D16_filter_DX,
S16_D16_nofilter_DXDY,
S16_D16_nofilter_DX,
S16_D16_filter_DXDY,
S16_D16_filter_DX,
SI8_D16_nofilter_DXDY,
SI8_D16_nofilter_DX,
SI8_D16_filter_DXDY,
SI8_D16_filter_DX,
// Don't support 4444 -> 565
NULL, NULL, NULL, NULL,
// Don't support A8 -> 565
NULL, NULL, NULL, NULL
};
#endif
fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index];
index >>= 1; // shift away any opaque/alpha distinction
fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index];
// our special-case shaderprocs
if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) {
if (clamp_clamp) {
fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc);
} else if (SkShader::kRepeat_TileMode == fTileModeX &&
SkShader::kRepeat_TileMode == fTileModeY) {
fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc);
}
} else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clamp_clamp) {
fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc);
}
// see if our platform has any accelerated overrides
this->platformProcs();
return true;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
static void check_scale_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
unsigned y = *bitmapXY++;
SkASSERT(y < my);
const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
for (int i = 0; i < count; ++i) {
SkASSERT(xptr[i] < mx);
}
}
static void check_scale_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
for (int i = 0; i < count; ++i) {
uint32_t XX = bitmapXY[i];
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
static void check_affine_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t XY = bitmapXY[i];
unsigned x = XY & 0xFFFF;
unsigned y = XY >> 16;
SkASSERT(x < mx);
SkASSERT(y < my);
}
}
static void check_affine_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
uint32_t XX = *bitmapXY++;
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
uint32_t bitmapXY[], int count,
int x, int y) {
SkASSERT(bitmapXY);
SkASSERT(count > 0);
state.fMatrixProc(state, bitmapXY, count, x, y);
void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);
// There are four formats possible:
// scale -vs- affine
// filter -vs- nofilter
if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
proc = state.fDoFilter ? check_scale_filter : check_scale_nofilter;
} else {
proc = state.fDoFilter ? check_affine_filter : check_affine_nofilter;
}
proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height());
}
SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
return DebugMatrixProc;
}
#endif
///////////////////////////////////////////////////////////////////////////////
/*
The storage requirements for the different matrix procs are as follows,
where each X or Y is 2 bytes, and N is the number of pixels/elements:
scale/translate nofilter Y(4bytes) + N * X
affine/perspective nofilter N * (X Y)
scale/translate filter Y Y + N * (X X)
affine/perspective filter N * (Y Y X X)
*/
int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
int32_t size = static_cast<int32_t>(bufferSize);
size &= ~3; // only care about 4-byte aligned chunks
if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
size -= 4; // the shared Y (or YY) coordinate
if (size < 0) {
size = 0;
}
size >>= 1;
} else {
size >>= 2;
}
if (fDoFilter) {
size >>= 1;
}
return size;
}
|