aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkBitmapProcState.cpp
blob: 9290dcd38877cd7480b79b17276e2bc7c5d1727d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmapCache.h"
#include "SkBitmapController.h"
#include "SkBitmapProcState.h"
#include "SkColorData.h"
#include "SkMacros.h"
#include "SkPaint.h"
#include "SkShader.h"   // for tilemodes
#include "SkUtilsArm.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkImageEncoder.h"
#include "SkResourceCache.h"

#if defined(SK_ARM_HAS_NEON)
// These are defined in src/opts/SkBitmapProcState_arm_neon.cpp
extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
#endif

extern void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void*, int, int, uint32_t*, int);

#define   NAME_WRAP(x)  x
#include "SkBitmapProcState_filter.h"
#include "SkBitmapProcState_procs.h"

SkBitmapProcInfo::SkBitmapProcInfo(const SkBitmapProvider& provider,
                                   SkShader::TileMode tmx, SkShader::TileMode tmy)
    : fProvider(provider)
    , fTileModeX(tmx)
    , fTileModeY(tmy)
    , fBMState(nullptr)
{}

SkBitmapProcInfo::~SkBitmapProcInfo() {}

///////////////////////////////////////////////////////////////////////////////

// true iff the matrix has a scale and no more than an optional translate.
static bool matrix_only_scale_translate(const SkMatrix& m) {
    return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask;
}

/**
 *  For the purposes of drawing bitmaps, if a matrix is "almost" translate
 *  go ahead and treat it as if it were, so that subsequent code can go fast.
 */
static bool just_trans_general(const SkMatrix& matrix) {
    SkASSERT(matrix_only_scale_translate(matrix));

    const SkScalar tol = SK_Scalar1 / 32768;

    return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)
        && SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol);
}

/**
 *  Determine if the matrix can be treated as integral-only-translate,
 *  for the purpose of filtering.
 */
static bool just_trans_integral(const SkMatrix& m) {
    static constexpr SkScalar tol = SK_Scalar1 / 256;

    return m.getType() <= SkMatrix::kTranslate_Mask
        && SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol)
        && SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol);
}

static bool valid_for_filtering(unsigned dimension) {
    // for filtering, width and height must fit in 14bits, since we use steal
    // 2 bits from each to store our 4bit subpixel data
    return (dimension & ~0x3FFF) == 0;
}

bool SkBitmapProcInfo::init(const SkMatrix& inv, const SkPaint& paint) {
    SkASSERT(inv.isScaleTranslate());

    fPixmap.reset();
    fInvMatrix = inv;
    fFilterQuality = paint.getFilterQuality();

    fBMState = SkBitmapController::RequestBitmap(fProvider, inv, paint.getFilterQuality(), &fAlloc);

    // Note : we allow the controller to return an empty (zero-dimension) result. Should we?
    if (nullptr == fBMState || fBMState->pixmap().info().isEmpty()) {
        return false;
    }
    fPixmap = fBMState->pixmap();
    fInvMatrix = fBMState->invMatrix();
    fRealInvMatrix = fBMState->invMatrix();
    fPaintColor = paint.getColor();
    fFilterQuality = fBMState->quality();
    SkASSERT(fFilterQuality <= kLow_SkFilterQuality);
    SkASSERT(fPixmap.addr());

    bool integral_translate_only = just_trans_integral(fInvMatrix);
    if (!integral_translate_only) {
        // Most of the scanline procs deal with "unit" texture coordinates, as this
        // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate
        // those, we divide the matrix by its dimensions here.
        //
        // We don't do this if we're either trivial (can ignore the matrix) or clamping
        // in both X and Y since clamping to width,height is just as easy as to 0xFFFF.

        if (fTileModeX != SkShader::kClamp_TileMode ||
            fTileModeY != SkShader::kClamp_TileMode) {
            fInvMatrix.postIDiv(fPixmap.width(), fPixmap.height());
        }

        // Now that all possible changes to the matrix have taken place, check
        // to see if we're really close to a no-scale matrix.  If so, explicitly
        // set it to be so.  Subsequent code may inspect this matrix to choose
        // a faster path in this case.

        // This code will only execute if the matrix has some scale component;
        // if it's already pure translate then we won't do this inversion.

        if (matrix_only_scale_translate(fInvMatrix)) {
            SkMatrix forward;
            if (fInvMatrix.invert(&forward) && just_trans_general(forward)) {
                fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY());
            }
        }

        // Recompute the flag after matrix adjustments.
        integral_translate_only = just_trans_integral(fInvMatrix);
    }

    fInvType = fInvMatrix.getType();

    if (kLow_SkFilterQuality == fFilterQuality &&
        (!valid_for_filtering(fPixmap.width() | fPixmap.height()) ||
         integral_translate_only)) {
        fFilterQuality = kNone_SkFilterQuality;
    }

    return true;
}

/*
 *  Analyze filter-quality and matrix, and decide how to implement that.
 *
 *  In general, we cascade down the request level [ High ... None ]
 *  - for a given level, if we can fulfill it, fine, else
 *    - else we downgrade to the next lower level and try again.
 *  We can always fulfill requests for Low and None
 *  - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack
 *    and may be removed.
 */
bool SkBitmapProcState::chooseProcs() {
    fInvProc            = SkMatrixPriv::GetMapXYProc(fInvMatrix);
    fInvSx              = SkScalarToFixed(fInvMatrix.getScaleX());
    fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX());
    fInvKy              = SkScalarToFixed(fInvMatrix.getSkewY());
    fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY());

    fAlphaScale = SkAlpha255To256(SkColorGetA(fPaintColor));

    fShaderProc32 = nullptr;
    fShaderProc16 = nullptr;
    fSampleProc32 = nullptr;

    const bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
    const bool clampClamp = SkShader::kClamp_TileMode == fTileModeX &&
                            SkShader::kClamp_TileMode == fTileModeY;

    return this->chooseScanlineProcs(trivialMatrix, clampClamp);
}

bool SkBitmapProcState::chooseScanlineProcs(bool trivialMatrix, bool clampClamp) {
    SkASSERT(fPixmap.colorType() == kN32_SkColorType);

    fMatrixProc = this->chooseMatrixProc(trivialMatrix);
    // TODO(dominikg): SkASSERT(fMatrixProc) instead? chooseMatrixProc never returns nullptr.
    if (nullptr == fMatrixProc) {
        return false;
    }

    const SkAlphaType at = fPixmap.alphaType();
    if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
        return false;
    }

    // No need to do this if we're doing HQ sampling; if filter quality is
    // still set to HQ by the time we get here, then we must have installed
    // the shader procs above and can skip all this.

    if (fFilterQuality < kHigh_SkFilterQuality) {
        int index = 0;
        if (fAlphaScale < 256) {  // note: this distinction is not used for D16
            index |= 1;
        }
        if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
            index |= 2;
        }
        if (fFilterQuality > kNone_SkFilterQuality) {
            index |= 4;
        }

#if !defined(SK_ARM_HAS_NEON)
        static const SampleProc32 gSkBitmapProcStateSample32[] = {
            S32_opaque_D32_nofilter_DXDY,
            S32_alpha_D32_nofilter_DXDY,
            S32_opaque_D32_nofilter_DX,
            S32_alpha_D32_nofilter_DX,
            S32_opaque_D32_filter_DXDY,
            S32_alpha_D32_filter_DXDY,
            S32_opaque_D32_filter_DX,
            S32_alpha_D32_filter_DX,
        };
#endif

        fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index];

        // our special-case shaderprocs
        if (S32_opaque_D32_nofilter_DX == fSampleProc32 && clampClamp) {
            fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc;
        }

        if (nullptr == fShaderProc32) {
            fShaderProc32 = this->chooseShaderProc32();
        }
    }

    // see if our platform has any accelerated overrides
    this->platformProcs();

    return true;
}

static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn,
                                                    int x, int y,
                                                    SkPMColor* SK_RESTRICT colors,
                                                    int count) {
    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
    SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
    SkASSERT(s.fInvKy == 0);
    SkASSERT(count > 0 && colors != nullptr);
    SkASSERT(kNone_SkFilterQuality == s.fFilterQuality);

    const int maxX = s.fPixmap.width() - 1;
    const int maxY = s.fPixmap.height() - 1;
    int ix = s.fFilterOneX + x;
    int iy = SkClampMax(s.fFilterOneY + y, maxY);
    const SkPMColor* row = s.fPixmap.addr32(0, iy);

    // clamp to the left
    if (ix < 0) {
        int n = SkMin32(-ix, count);
        sk_memset32(colors, row[0], n);
        count -= n;
        if (0 == count) {
            return;
        }
        colors += n;
        SkASSERT(-ix == n);
        ix = 0;
    }
    // copy the middle
    if (ix <= maxX) {
        int n = SkMin32(maxX - ix + 1, count);
        memcpy(colors, row + ix, n * sizeof(SkPMColor));
        count -= n;
        if (0 == count) {
            return;
        }
        colors += n;
    }
    SkASSERT(count > 0);
    // clamp to the right
    sk_memset32(colors, row[maxX], count);
}

static inline int sk_int_mod(int x, int n) {
    SkASSERT(n > 0);
    if ((unsigned)x >= (unsigned)n) {
        if (x < 0) {
            x = n + ~(~x % n);
        } else {
            x = x % n;
        }
    }
    return x;
}

static inline int sk_int_mirror(int x, int n) {
    x = sk_int_mod(x, 2 * n);
    if (x >= n) {
        x = n + ~(x - n);
    }
    return x;
}

static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn,
                                                     int x, int y,
                                                     SkPMColor* SK_RESTRICT colors,
                                                     int count) {
    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
    SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
    SkASSERT(s.fInvKy == 0);
    SkASSERT(count > 0 && colors != nullptr);
    SkASSERT(kNone_SkFilterQuality == s.fFilterQuality);

    const int stopX = s.fPixmap.width();
    const int stopY = s.fPixmap.height();
    int ix = s.fFilterOneX + x;
    int iy = sk_int_mod(s.fFilterOneY + y, stopY);
    const SkPMColor* row = s.fPixmap.addr32(0, iy);

    ix = sk_int_mod(ix, stopX);
    for (;;) {
        int n = SkMin32(stopX - ix, count);
        memcpy(colors, row + ix, n * sizeof(SkPMColor));
        count -= n;
        if (0 == count) {
            return;
        }
        colors += n;
        ix = 0;
    }
}

static void S32_D32_constX_shaderproc(const void* sIn,
                                      int x, int y,
                                      SkPMColor* SK_RESTRICT colors,
                                      int count) {
    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
    SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0);
    SkASSERT(s.fInvKy == 0);
    SkASSERT(count > 0 && colors != nullptr);
    SkASSERT(1 == s.fPixmap.width());

    int iY0;
    int iY1   SK_INIT_TO_AVOID_WARNING;
    int iSubY SK_INIT_TO_AVOID_WARNING;

    if (kNone_SkFilterQuality != s.fFilterQuality) {
        SkBitmapProcState::MatrixProc mproc = s.getMatrixProc();
        uint32_t xy[2];

        mproc(s, xy, 1, x, y);

        iY0 = xy[0] >> 18;
        iY1 = xy[0] & 0x3FFF;
        iSubY = (xy[0] >> 14) & 0xF;
    } else {
        int yTemp;

        if (s.fInvType > SkMatrix::kTranslate_Mask) {
            const SkBitmapProcStateAutoMapper mapper(s, x, y);

            // When the matrix has a scale component the setup code in
            // chooseProcs multiples the inverse matrix by the inverse of the
            // bitmap's width and height. Since this method is going to do
            // its own tiling and sampling we need to undo that here.
            if (SkShader::kClamp_TileMode != s.fTileModeX ||
                SkShader::kClamp_TileMode != s.fTileModeY) {
                yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
            } else {
                yTemp = mapper.intY();
            }
        } else {
            yTemp = s.fFilterOneY + y;
        }

        const int stopY = s.fPixmap.height();
        switch (s.fTileModeY) {
            case SkShader::kClamp_TileMode:
                iY0 = SkClampMax(yTemp, stopY-1);
                break;
            case SkShader::kRepeat_TileMode:
                iY0 = sk_int_mod(yTemp, stopY);
                break;
            case SkShader::kMirror_TileMode:
            default:
                iY0 = sk_int_mirror(yTemp, stopY);
                break;
        }

#ifdef SK_DEBUG
        {
            const SkBitmapProcStateAutoMapper mapper(s, x, y);
            int iY2;

            if (s.fInvType > SkMatrix::kTranslate_Mask &&
                (SkShader::kClamp_TileMode != s.fTileModeX ||
                 SkShader::kClamp_TileMode != s.fTileModeY)) {
                iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
            } else {
                iY2 = mapper.intY();
            }

            switch (s.fTileModeY) {
            case SkShader::kClamp_TileMode:
                iY2 = SkClampMax(iY2, stopY-1);
                break;
            case SkShader::kRepeat_TileMode:
                iY2 = sk_int_mod(iY2, stopY);
                break;
            case SkShader::kMirror_TileMode:
            default:
                iY2 = sk_int_mirror(iY2, stopY);
                break;
            }

            SkASSERT(iY0 == iY2);
        }
#endif
    }

    const SkPMColor* row0 = s.fPixmap.addr32(0, iY0);
    SkPMColor color;

    if (kNone_SkFilterQuality != s.fFilterQuality) {
        const SkPMColor* row1 = s.fPixmap.addr32(0, iY1);

        if (s.fAlphaScale < 256) {
            Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale);
        } else {
            Filter_32_opaque(iSubY, *row0, *row1, &color);
        }
    } else {
        if (s.fAlphaScale < 256) {
            color = SkAlphaMulQ(*row0, s.fAlphaScale);
        } else {
            color = *row0;
        }
    }

    sk_memset32(colors, color, count);
}

static void DoNothing_shaderproc(const void*, int x, int y,
                                 SkPMColor* SK_RESTRICT colors, int count) {
    // if we get called, the matrix is too tricky, so we just draw nothing
    sk_memset32(colors, 0, count);
}

bool SkBitmapProcState::setupForTranslate() {
    SkPoint pt;
    const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt);

    /*
     *  if the translate is larger than our ints, we can get random results, or
     *  worse, we might get 0x80000000, which wreaks havoc on us, since we can't
     *  negate it.
     */
    const SkScalar too_big = SkIntToScalar(1 << 30);
    if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) {
        return false;
    }

    // Since we know we're not filtered, we re-purpose these fields allow
    // us to go from device -> src coordinates w/ just an integer add,
    // rather than running through the inverse-matrix
    fFilterOneX = mapper.intX();
    fFilterOneY = mapper.intY();

    return true;
}

SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() {

    if (kN32_SkColorType != fPixmap.colorType()) {
        return nullptr;
    }

    static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;

    if (1 == fPixmap.width() && 0 == (fInvType & ~kMask)) {
        if (kNone_SkFilterQuality == fFilterQuality &&
            fInvType <= SkMatrix::kTranslate_Mask &&
            !this->setupForTranslate()) {
            return DoNothing_shaderproc;
        }
        return S32_D32_constX_shaderproc;
    }

    if (fAlphaScale < 256) {
        return nullptr;
    }
    if (fInvType > SkMatrix::kTranslate_Mask) {
        return nullptr;
    }
    if (kNone_SkFilterQuality != fFilterQuality) {
        return nullptr;
    }

    SkShader::TileMode tx = (SkShader::TileMode)fTileModeX;
    SkShader::TileMode ty = (SkShader::TileMode)fTileModeY;

    if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) {
        if (this->setupForTranslate()) {
            return Clamp_S32_D32_nofilter_trans_shaderproc;
        }
        return DoNothing_shaderproc;
    }
    if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) {
        if (this->setupForTranslate()) {
            return Repeat_S32_D32_nofilter_trans_shaderproc;
        }
        return DoNothing_shaderproc;
    }
    return nullptr;
}

///////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG

static void check_scale_nofilter(uint32_t bitmapXY[], int count,
                                 unsigned mx, unsigned my) {
    unsigned y = *bitmapXY++;
    SkASSERT(y < my);

    const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
    for (int i = 0; i < count; ++i) {
        SkASSERT(xptr[i] < mx);
    }
}

static void check_scale_filter(uint32_t bitmapXY[], int count,
                                 unsigned mx, unsigned my) {
    uint32_t YY = *bitmapXY++;
    unsigned y0 = YY >> 18;
    unsigned y1 = YY & 0x3FFF;
    SkASSERT(y0 < my);
    SkASSERT(y1 < my);

    for (int i = 0; i < count; ++i) {
        uint32_t XX = bitmapXY[i];
        unsigned x0 = XX >> 18;
        unsigned x1 = XX & 0x3FFF;
        SkASSERT(x0 < mx);
        SkASSERT(x1 < mx);
    }
}

void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
                                        uint32_t bitmapXY[], int count,
                                        int x, int y) {
    SkASSERT(bitmapXY);
    SkASSERT(count > 0);

    state.fMatrixProc(state, bitmapXY, count, x, y);

    void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);

    // There are two formats possible:
    //  filter -vs- nofilter
    SkASSERT(state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask));
    proc = state.fFilterQuality != kNone_SkFilterQuality ?
                check_scale_filter : check_scale_nofilter;
    proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height());
}

SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
    return DebugMatrixProc;
}

#endif

///////////////////////////////////////////////////////////////////////////////
/*
    The storage requirements for the different matrix procs are as follows,
    where each X or Y is 2 bytes, and N is the number of pixels/elements:

    scale/translate     nofilter      Y(4bytes) + N * X
    affine/perspective  nofilter      N * (X Y)
    scale/translate     filter        Y Y + N * (X X)
    affine              filter        N * (Y Y X X)
 */
int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
    int32_t size = static_cast<int32_t>(bufferSize);

    size &= ~3; // only care about 4-byte aligned chunks
    if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
        size -= 4;   // the shared Y (or YY) coordinate
        if (size < 0) {
            size = 0;
        }
        size >>= 1;
    } else {
        size >>= 2;
    }

    if (fFilterQuality != kNone_SkFilterQuality) {
        size >>= 1;
    }

    return size;
}

///////////////////////

void  Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y,
                                                  SkPMColor* SK_RESTRICT dst, int count) {
    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
    SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
                             SkMatrix::kScale_Mask)) == 0);

    const unsigned maxX = s.fPixmap.width() - 1;
    SkFractionalInt fx;
    int dstY;
    {
        const SkBitmapProcStateAutoMapper mapper(s, x, y);
        const unsigned maxY = s.fPixmap.height() - 1;
        dstY = SkClampMax(mapper.intY(), maxY);
        fx = mapper.fractionalIntX();
    }

    const SkPMColor* SK_RESTRICT src = s.fPixmap.addr32(0, dstY);
    const SkFractionalInt dx = s.fInvSxFractionalInt;

    // Check if we're safely inside [0...maxX] so no need to clamp each computed index.
    //
    if ((uint64_t)SkFractionalIntToInt(fx) <= maxX &&
        (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX)
    {
        int count4 = count >> 2;
        for (int i = 0; i < count4; ++i) {
            SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx;
            SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx;
            SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx;
            SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx;
            dst[0] = src0;
            dst[1] = src1;
            dst[2] = src2;
            dst[3] = src3;
            dst += 4;
        }
        for (int i = (count4 << 2); i < count; ++i) {
            unsigned index = SkFractionalIntToInt(fx);
            SkASSERT(index <= maxX);
            *dst++ = src[index];
            fx += dx;
        }
    } else {
        for (int i = 0; i < count; ++i) {
            dst[i] = src[SkClampMax(SkFractionalIntToInt(fx), maxX)];
            fx += dx;
        }
    }
}