aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkAnalyticEdge.h
blob: a1d3da3314bd31a6ea4e3f5c190ad076c5fcc960 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkAnalyticEdge_DEFINED
#define SkAnalyticEdge_DEFINED

#include "SkEdge.h"
#include "SkTo.h"

#include <utility>

struct SkAnalyticEdge {
    // Similar to SkEdge, the conic edges will be converted to quadratic edges
    enum Type {
        kLine_Type,
        kQuad_Type,
        kCubic_Type
    };

    SkAnalyticEdge* fNext;
    SkAnalyticEdge* fPrev;

    // During aaa_walk_edges, if this edge is a left edge,
    // then fRiteE is its corresponding right edge. Otherwise it's nullptr.
    SkAnalyticEdge* fRiteE;

    SkFixed fX;
    SkFixed fDX;
    SkFixed fUpperX;        // The x value when y = fUpperY
    SkFixed fY;             // The current y
    SkFixed fUpperY;        // The upper bound of y (our edge is from y = fUpperY to y = fLowerY)
    SkFixed fLowerY;        // The lower bound of y (our edge is from y = fUpperY to y = fLowerY)
    SkFixed fDY;            // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0.
                            // fDY is only used for blitting trapezoids.

    SkFixed fSavedX;        // For deferred blitting
    SkFixed fSavedY;        // For deferred blitting
    SkFixed fSavedDY;       // For deferred blitting

    int8_t  fCurveCount;    // only used by kQuad(+) and kCubic(-)
    uint8_t fCurveShift;    // appled to all Dx/DDx/DDDx except for fCubicDShift exception
    uint8_t fCubicDShift;   // applied to fCDx and fCDy only in cubic
    int8_t  fWinding;       // 1 or -1

    static const int kDefaultAccuracy = 2; // default accuracy for snapping

    static inline SkFixed SnapY(SkFixed y) {
        const int accuracy = kDefaultAccuracy;
        // This approach is safer than left shift, round, then right shift
        return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy);
    }

    // Update fX, fY of this edge so fY = y
    inline void goY(SkFixed y) {
        if (y == fY + SK_Fixed1) {
            fX = fX + fDX;
            fY = y;
        } else if (y != fY) {
            // Drop lower digits as our alpha only has 8 bits
            // (fDX and y - fUpperY may be greater than SK_Fixed1)
            fX = fUpperX + SkFixedMul(fDX, y - fUpperY);
            fY = y;
        }
    }

    inline void goY(SkFixed y, int yShift) {
        SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy);
        SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift);
        fY = y;
        fX += fDX >> yShift;
    }

    inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) {
        fSavedX = x;
        fSavedY = y;
        fSavedDY = dY;
    }

    inline bool setLine(const SkPoint& p0, const SkPoint& p1);
    inline bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);

    // return true if we're NOT done with this edge
    bool update(SkFixed last_y, bool sortY = true);

#ifdef SK_DEBUG
    void dump() const {
        SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n",
                 fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX),
                 SkFixedToFloat(fDX), fWinding);
    }

    void validate() const {
         SkASSERT(fPrev && fNext);
         SkASSERT(fPrev->fNext == this);
         SkASSERT(fNext->fPrev == this);

         SkASSERT(fUpperY < fLowerY);
         SkASSERT(SkAbs32(fWinding) == 1);
    }
#endif
};

struct SkAnalyticQuadraticEdge : public SkAnalyticEdge {
    SkQuadraticEdge fQEdge;

    // snap y to integer points in the middle of the curve to accelerate AAA path filling
    SkFixed fSnappedX, fSnappedY;

    bool setQuadratic(const SkPoint pts[3]);
    bool updateQuadratic();
    inline void keepContinuous() {
        // We use fX as the starting x to ensure the continuouty.
        // Without it, we may break the sorted edge list.
        SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1);
        SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump
        fSnappedX = fX;
        fSnappedY = fY;
    }
};

struct SkAnalyticCubicEdge : public SkAnalyticEdge {
    SkCubicEdge fCEdge;

    SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping

    bool setCubic(const SkPoint pts[4], bool sortY = true);
    bool updateCubic(bool sortY = true);
    inline void keepContinuous() {
        SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1);
        fCEdge.fCx = fX;
        fSnappedY = fY;
    }
};

bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) {
    fRiteE = nullptr;

    // We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics.
    // Otherwise the order of the edge might be wrong due to precision limit.
    const int accuracy = kDefaultAccuracy;
#ifdef SK_RASTERIZE_EVEN_ROUNDING
    SkFixed x0 = SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fX, accuracy)) >> accuracy;
    SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fY, accuracy)) >> accuracy);
    SkFixed x1 = SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fX, accuracy)) >> accuracy;
    SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fY, accuracy)) >> accuracy);
#else
    const int multiplier = (1 << kDefaultAccuracy);
    SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy;
    SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy);
    SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy;
    SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy);
#endif

    int winding = 1;

    if (y0 > y1) {
        using std::swap;
        swap(x0, x1);
        swap(y0, y1);
        winding = -1;
    }

    // are we a zero-height line?
    SkFDot6 dy = SkFixedToFDot6(y1 - y0);
    if (dy == 0) {
        return false;
    }
    SkFDot6 dx = SkFixedToFDot6(x1 - x0);
    SkFixed slope = QuickSkFDot6Div(dx, dy);
    SkFixed absSlope = SkAbs32(slope);

    fX          = x0;
    fDX         = slope;
    fUpperX     = x0;
    fY          = y0;
    fUpperY     = y0;
    fLowerY     = y1;
    fDY         = dx == 0 || slope == 0 ? SK_MaxS32 : absSlope < kInverseTableSize
                                                    ? QuickFDot6Inverse::Lookup(absSlope)
                                                    : SkAbs32(QuickSkFDot6Div(dy, dx));
    fCurveCount = 0;
    fWinding    = SkToS8(winding);
    fCurveShift = 0;

    return true;
}

struct SkBezier {
    int fCount; // 2 line, 3 quad, 4 cubic
    SkPoint fP0;
    SkPoint fP1;

    // See if left shift, covert to SkFDot6, and round has the same top and bottom y.
    // If so, the edge will be empty.
    static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) {
#ifdef SK_RASTERIZE_EVEN_ROUNDING
        return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift);
#else
        SkScalar scale = (1 << (shift + 6));
        return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale));
#endif
    }
};

struct SkLine : public SkBezier {
    bool set(const SkPoint pts[2]){
        if (IsEmpty(pts[0].fY, pts[1].fY)) {
            return false;
        }
        fCount = 2;
        fP0 = pts[0];
        fP1 = pts[1];
        return true;
    }
};

struct SkQuad : public SkBezier {
    SkPoint fP2;

    bool set(const SkPoint pts[3]){
        if (IsEmpty(pts[0].fY, pts[2].fY)) {
            return false;
        }
        fCount = 3;
        fP0 = pts[0];
        fP1 = pts[1];
        fP2 = pts[2];
        return true;
    }
};

struct SkCubic : public SkBezier {
    SkPoint fP2;
    SkPoint fP3;

    bool set(const SkPoint pts[4]){
        // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be
        // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just
        // checking IsEmpty(pts[0].fY, pts[3].fY).
        if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) &&
                IsEmpty(pts[2].fY, pts[3].fY)) {
            return false;
        }
        fCount = 4;
        fP0 = pts[0];
        fP1 = pts[1];
        fP2 = pts[2];
        fP3 = pts[3];
        return true;
    }
};

#endif