aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/compute/skc/scheduler.cpp
blob: 1099deb1caad8cee7fb4c5dd1bfce24c013171b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can
 * be found in the LICENSE file.
 *
 */

//
// There is either no or limited support for C11 atomics in the C
// compilers we're targeting so, for now, implement this in C++11
//

//
// FIXME -- get rid of the extent and have supplicants bring their own
// task structure with a known base structure
//

extern "C" {

#include "scheduler.h"
#include "runtime_cl_12.h" // FIXME -- all allocations are extent structures

}

//
// SUPER-IMPORTANT:
//
// THIS LOW-LEVEL SCHEDULER ASSUMES THERE ARE A MAXIMUM NUMBER OF
// PIPELINE GRIDS ACTIVE AT ANY TIME
//
// THIS IS A SAFE INVARIANT BECAUSE WE CONTROL THE VARIOUS POOL SIZE
// KNOBS AT CONTEXT CONFIGURATION TIME
//
// TRANSLATION: DO NOT LARD UP THIS IMPLEMENTATION WITH WELL-INTENDED
// BUT ENTIRELY UNNECESSARY LOGIC
//

#include <mutex>
#include <condition_variable>

//
// GRID STATES
//

typedef enum skc_scheduler_command_state {

  SKC_SCHEDULER_COMMAND_STATE_READY,
  SKC_SCHEDULER_COMMAND_STATE_WAITING,
  SKC_SCHEDULER_COMMAND_STATE_EXECUTING,
  SKC_SCHEDULER_COMMAND_STATE_COMPLETED,

  SKC_SCHEDULER_COMMAND_STATE_COUNT

} skc_scheduler_command_state;

//
//
//

struct skc_scheduler_command
{
  void *                      data;
  skc_scheduler_command_pfn   pfn;
  skc_scheduler_command_state state;
  char const *                name; 
};                                 

#if 0
struct skc_scheduler_command
{
  union {
    struct scheduler             * scheduler;
    struct skc_scheduler_command * next;
  };
  skc_scheduler_command_pfn        pfn;
};
#endif

//
//
//

struct skc_scheduler
{
  //
  // FIXME -- consider adding a backpointer to the runtime or other
  // critical state
  //

  struct skc_scheduler_command * extent;

  struct {
    std::mutex                   mutex;

    skc_ushort                 * indices;
    skc_uint                     rem;
  } available;

  struct {
    std::mutex                   mutex;
    std::condition_variable      condvar;

    skc_ushort                 * indices;
    skc_uint                     size;
    skc_uint                     head;
    skc_uint                     tail;
  } waiting;
};

//
//
//

#if 1
#define SKC_SCHEDULER_EXECUTE(sc) \
  sc->pfn(sc->data)
#else
#define SKC_SCHEDULER_EXECUTE(sc)               \
  fprintf(stderr,"EXECUTE+ %s\n",sc->name);     \
  sc->pfn(sc->data);                            \
  fprintf(stderr,"EXECUTE- %s\n",sc->name);
#endif

//
//
//

struct skc_scheduler *
skc_scheduler_create(struct skc_runtime * const runtime, skc_uint const size)
{
  // allocate scheduler
  struct skc_scheduler * scheduler = (struct skc_scheduler*)
    skc_runtime_host_perm_alloc(runtime,SKC_MEM_FLAGS_READ_WRITE,sizeof(*scheduler));

  // execute various std:atomic constructors
  new (scheduler) skc_scheduler();

  // initialize members
  scheduler->extent            = (struct skc_scheduler_command*)
    skc_runtime_host_perm_alloc(runtime,SKC_MEM_FLAGS_READ_WRITE,(sizeof(*scheduler->extent) * size));

  scheduler->available.indices = (skc_ushort*)
    skc_runtime_host_perm_alloc(runtime,SKC_MEM_FLAGS_READ_WRITE,sizeof(*scheduler->available.indices) * size);

  scheduler->available.rem     = size;

  scheduler->waiting.indices   = (skc_ushort*)
    skc_runtime_host_perm_alloc(runtime,SKC_MEM_FLAGS_READ_WRITE,sizeof(*scheduler->available.indices) * (size + 1));

  scheduler->waiting.size      = size + 1; // the ring has an extra slot
  scheduler->waiting.head      = 0;
  scheduler->waiting.tail      = 0;

  for (skc_uint ii=0; ii<size; ii++)
    scheduler->available.indices[ii] = ii;

  return scheduler;
}

void
skc_scheduler_dispose(struct skc_runtime   * const runtime,
                      struct skc_scheduler * const scheduler)
{
  // free members
  skc_runtime_host_perm_free(runtime,scheduler->waiting.indices);
  skc_runtime_host_perm_free(runtime,scheduler->available.indices);
  skc_runtime_host_perm_free(runtime,scheduler->extent);

  // execute various std:atomic destructors
  scheduler->~skc_scheduler();

  // free struct
  skc_runtime_host_perm_free(runtime,scheduler);
}

//
//
//

static
skc_scheduler_command_t
skc_scheduler_acquire(struct skc_scheduler * const scheduler,
                      skc_scheduler_command_pfn    pfn,
                      void                       * data,
                      char const                 * name)
{
  skc_scheduler_command_t command = SKC_SCHEDULER_COMMAND_INVALID;

  {
    // mutex lock
    std::lock_guard<std::mutex> lock(scheduler->available.mutex);

    // get first available index
    if (scheduler->available.rem > 0)
      command = scheduler->available.indices[--scheduler->available.rem];

    // mutex unlock
  }

  if (command != SKC_SCHEDULER_COMMAND_INVALID)
    {
      // initialize command
      struct skc_scheduler_command * const sc = scheduler->extent + command;

      sc->pfn   = pfn;
      sc->data  = data;
      sc->name  = name;
      sc->state = SKC_SCHEDULER_COMMAND_STATE_READY;
    }

  // return command handle
  return command;
}

//
//
//

static
void
skc_scheduler_release(struct skc_scheduler  * const scheduler,
                      skc_scheduler_command_t const command)
{
  // mutex lock
  std::lock_guard<std::mutex> lock(scheduler->available.mutex);

  // get first available index
  scheduler->available.indices[scheduler->available.rem++] = command;

  // mutex unlock
}

//
//
//

static
void
skc_scheduler_append(struct skc_scheduler  * const scheduler,
                     skc_scheduler_command_t const command)
{
  scheduler->extent[command].state = SKC_SCHEDULER_COMMAND_STATE_WAITING;

  {
    // mutex unique lock (locks on construction)
    std::unique_lock<std::mutex> lock(scheduler->waiting.mutex);

    // note that we guarantee there is always room to store the command

    // append index to ring
    scheduler->waiting.indices[scheduler->waiting.tail] = command;

    // update last
    if (++scheduler->waiting.tail == scheduler->waiting.size)
      scheduler->waiting.tail = 0;

    // mutex unlock
  }

  // signal condvar
  scheduler->waiting.condvar.notify_one();
}

//
//
//

skc_scheduler_command_t
skc_scheduler_schedule(struct skc_scheduler    * const scheduler,
                       skc_scheduler_command_pfn const pfn,
                       void                    *       data,
                       char              const * const name)
{
  while (true)
    {
      skc_scheduler_command_t const command = skc_scheduler_acquire(scheduler,pfn,data,name);

      if (command != SKC_SCHEDULER_COMMAND_INVALID)
        {
          skc_scheduler_append(scheduler,command);

          return command;
        }
      else
        {
          skc_scheduler_wait(scheduler);
        }
    }
}

//
// try to pop but don't wait
//

static
void
skc_scheduler_pop(struct skc_scheduler    * const scheduler,
                  skc_scheduler_command_t * const command)
{
  *command = SKC_SCHEDULER_COMMAND_INVALID;

  // mutex lock
  std::unique_lock<std::mutex> lock(scheduler->waiting.mutex);

  if (scheduler->waiting.head != scheduler->waiting.tail)
    {
      // get index at first
      *command = scheduler->waiting.indices[scheduler->waiting.head];

      // update first
      if (++scheduler->waiting.head == scheduler->waiting.size)
        scheduler->waiting.head = 0;
    }

  // mutex unlock
}

static
void
skc_scheduler_pop_wait(struct skc_scheduler    * const scheduler,
                       skc_scheduler_command_t * const command)
{
  // mutex unique lock -- locks on construction
  std::unique_lock<std::mutex> lock(scheduler->waiting.mutex);

  // wait for command
  scheduler->waiting.condvar.wait(lock,[scheduler] {
      return scheduler->waiting.head != scheduler->waiting.tail;
    });

  // get index at first
  *command = scheduler->waiting.indices[scheduler->waiting.head];

  // update first
  if (++scheduler->waiting.head == scheduler->waiting.size)
    scheduler->waiting.head = 0;

  // mutex unlock
}

//
//
//

static
void
skc_scheduler_command_execute(struct skc_scheduler_command * const sc)
{
  sc->state = SKC_SCHEDULER_COMMAND_STATE_EXECUTING;

  SKC_SCHEDULER_EXECUTE(sc);

  sc->state = SKC_SCHEDULER_COMMAND_STATE_COMPLETED;
}

static
void
skc_scheduler_execute(struct skc_scheduler  * const scheduler,
                      skc_scheduler_command_t const command)

{
  // execute
  skc_scheduler_command_execute(scheduler->extent + command);

  // release
  skc_scheduler_release(scheduler,command);
}

//
// drain the scheduler
//

skc_bool
skc_scheduler_yield(struct skc_scheduler * const scheduler) // wait for 0 or more completed grids
{
  // fprintf(stderr,"YIELD+\n");

  while (true)
    {
      skc_scheduler_command_t command;

      skc_scheduler_pop(scheduler,&command);

      if (command == SKC_SCHEDULER_COMMAND_INVALID) {
        // fprintf(stderr,"YIELD!\n");
        return false;
      }

      // otherwise execute the completion record
      skc_scheduler_execute(scheduler,command);
    }

  // fprintf(stderr,"YIELD-\n");

  return true;
}

//
// wait for at least one grid to complete
//

void
skc_scheduler_wait(struct skc_scheduler * const scheduler)
{
  // fprintf(stderr,"WAIT+\n");

  skc_scheduler_command_t command;

  // wait for a completion record
  skc_scheduler_pop_wait(scheduler,&command);

  // execute the completion record
  skc_scheduler_execute(scheduler,command);

  // process remaining
  skc_scheduler_yield(scheduler);

  // fprintf(stderr,"WAIT-\n");
}

//
// wait for one grid to complete
//

void
skc_scheduler_wait_one(struct skc_scheduler * const scheduler)
{
  // fprintf(stderr,"WAIT1+\n");

  skc_scheduler_command_t command;

  // wait for a completion record
  skc_scheduler_pop_wait(scheduler,&command);

  // execute the completion record
  skc_scheduler_execute(scheduler,command);

  // fprintf(stderr,"WAIT1-\n");
}

//
//
//

#if 0

//
// wait for a specific grid to complete
//
//   true  : success
//   false : command wasn't started
//
// FIXME -- get rid of this idiom
//

skc_bool
skc_scheduler_wait_for(struct skc_scheduler  * const scheduler,
                       skc_scheduler_command_t const command)
{
  struct skc_scheduler_command * const sc = scheduler->extent + command;

  // command not started
  if (sc->state == SKC_SCHEDULER_COMMAND_STATE_READY)
    return false; // SKC_ERR_COMMAND_NOT_STARTED;

  // command is already complete
  if (sc->state == SKC_SCHEDULER_COMMAND_STATE_COMPLETED)
    return true; // SKC_ERR_SUCCESS;

  // force wip grids to start
  // skc_grid_force(grid_wait_for);

  // otherwise, wait!
  while (true)
    {
      skc_scheduler_command_t next;

      // wait for a completion record
      skc_scheduler_pop_wait(scheduler,&next);

      // execute the completion record
      skc_scheduler_execute(scheduler,next);

      // return if this was a match
      if (next == command)
        return true; // SKC_ERR_SUCCESS;
    }
}

//
//
//

void
skc_thread_sleep(skc_ulong const msecs)
{
  std::this_thread::sleep_for(std::chrono::milliseconds(msecs));
}

#endif

//
//
//