aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/codec/SkRawCodec.cpp
blob: 05f18ac635918d448149fe112374ebd57636789c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkCodec.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkData.h"
#if !defined(GOOGLE3)
#include "SkJpegCodec.h"
#endif
#include "SkRawCodec.h"
#include "SkRefCnt.h"
#include "SkStream.h"
#include "SkStreamPriv.h"
#include "SkSwizzler.h"
#include "SkTemplates.h"
#include "SkTypes.h"

#include "dng_color_space.h"
#include "dng_exceptions.h"
#include "dng_host.h"
#include "dng_info.h"
#include "dng_memory.h"
#include "dng_render.h"
#include "dng_stream.h"

#include "src/piex.h"

#include <cmath>  // for std::round,floor,ceil
#include <limits>

namespace {

// T must be unsigned type.
template <class T>
bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
    SkASSERT(arg1 >= 0);
    SkASSERT(arg2 >= 0);
    if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
        T sum = arg1 + arg2;
        if (sum <= std::numeric_limits<size_t>::max()) {
            *result = static_cast<size_t>(sum);
            return true;
        }
    }
    return false;
}

class SkDngMemoryAllocator : public dng_memory_allocator {
public:
    ~SkDngMemoryAllocator() override {}

    dng_memory_block* Allocate(uint32 size) override {
        // To avoid arbitary allocation requests which might lead to out-of-memory, limit the
        // amount of memory that can be allocated at once. The memory limit is based on experiments
        // and supposed to be sufficient for all valid DNG images.
        if (size > 300 * 1024 * 1024) {  // 300 MB
            ThrowMemoryFull();
        }
        return dng_memory_allocator::Allocate(size);
    }
};

}  // namespace

// Note: this class could throw exception if it is used as dng_stream.
class SkRawStream : public ::piex::StreamInterface {
public:
    // Note that this call will take the ownership of stream.
    explicit SkRawStream(SkStream* stream)
        : fStream(stream), fWholeStreamRead(false) {}

    ~SkRawStream() override {}

    /*
     * Creates an SkMemoryStream from the offset with size.
     * Note: for performance reason, this function is destructive to the SkRawStream. One should
     *       abandon current object after the function call.
     */
    SkMemoryStream* transferBuffer(size_t offset, size_t size) {
        SkAutoTUnref<SkData> data(SkData::NewUninitialized(size));
        if (offset > fStreamBuffer.bytesWritten()) {
            // If the offset is not buffered, read from fStream directly and skip the buffering.
            const size_t skipLength = offset - fStreamBuffer.bytesWritten();
            if (fStream->skip(skipLength) != skipLength) {
                return nullptr;
            }
            const size_t bytesRead = fStream->read(data->writable_data(), size);
            if (bytesRead < size) {
                data.reset(SkData::NewSubset(data.get(), 0, bytesRead));
            }
        } else {
            const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size);
            if (alreadyBuffered > 0 &&
                !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
                return nullptr;
            }

            const size_t remaining = size - alreadyBuffered;
            if (remaining) {
                auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
                const size_t bytesRead = fStream->read(dst, remaining);
                size_t newSize;
                if (bytesRead < remaining) {
                    if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
                        return nullptr;
                    }
                    data.reset(SkData::NewSubset(data.get(), 0, newSize));
                }
            }
        }
        return new SkMemoryStream(data);
    }

    // For PIEX
    ::piex::Error GetData(const size_t offset, const size_t length,
                          uint8* data) override {
        if (offset == 0 && length == 0) {
            return ::piex::Error::kOk;
        }
        size_t sum;
        if (!safe_add_to_size_t(offset, length, &sum) || !this->bufferMoreData(sum)) {
            return ::piex::Error::kFail;
        }
        if (!fStreamBuffer.read(data, offset, length)) {
            return ::piex::Error::kFail;
        }
        return ::piex::Error::kOk;
    }

    // For dng_stream
    uint64 getLength() {
        if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream
            ThrowReadFile();
        }
        return fStreamBuffer.bytesWritten();
    }

    // For dng_stream
    void read(void* data, uint32 count, uint64 offset) {
        if (count == 0 && offset == 0) {
            return;
        }
        size_t sum;
        if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
            !this->bufferMoreData(sum)) {
            ThrowReadFile();
        }

        if (!fStreamBuffer.read(data, offset, count)) {
            ThrowReadFile();
        }
    }

private:
    // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
    bool bufferMoreData(size_t newSize) {
        if (newSize == kReadToEnd) {
            if (fWholeStreamRead) {  // already read-to-end.
                return true;
            }

            // TODO: optimize for the special case when the input is SkMemoryStream.
            return SkStreamCopy(&fStreamBuffer, fStream.get());
        }

        if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize
            return true;
        }
        if (fWholeStreamRead) {  // newSize is larger than the whole stream.
            return false;
        }

        const size_t sizeToRead = newSize - fStreamBuffer.bytesWritten();
        SkAutoTMalloc<uint8> tempBuffer(sizeToRead);
        const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
        if (bytesRead != sizeToRead) {
            return false;
        }
        return fStreamBuffer.write(tempBuffer.get(), bytesRead);
    }

    SkAutoTDelete<SkStream> fStream;
    bool fWholeStreamRead;

    SkDynamicMemoryWStream fStreamBuffer;

    const size_t kReadToEnd = 0;
};

class SkDngStream : public dng_stream {
public:
    SkDngStream(SkRawStream* rawStream) : fRawStream(rawStream) {}

    uint64 DoGetLength() override { return fRawStream->getLength(); }

    void DoRead(void* data, uint32 count, uint64 offset) override {
        fRawStream->read(data, count, offset);
    }

private:
    SkRawStream* fRawStream;
};

class SkDngImage {
public:
    static SkDngImage* NewFromStream(SkRawStream* stream) {
        SkAutoTDelete<SkDngImage> dngImage(new SkDngImage(stream));
        if (!dngImage->readDng()) {
            return nullptr;
        }

        SkASSERT(dngImage->fNegative);
        return dngImage.release();
    }

    /*
     * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
     * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
     * but there is no guarantee that any of the edges will match the requested size. E.g.
     *   100% size:              4000 x 3000
     *   requested size:         1600 x 1200
     *   returned size could be: 2000 x 1500
     */
    dng_image* render(int width, int height) {
        if (!fHost || !fInfo || !fNegative || !fDngStream) {
            if (!this->readDng()) {
                return nullptr;
            }
        }

        // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
        SkAutoTDelete<dng_host> host(fHost.release());
        SkAutoTDelete<dng_info> info(fInfo.release());
        SkAutoTDelete<dng_negative> negative(fNegative.release());
        SkAutoTDelete<dng_stream> dngStream(fDngStream.release());

        // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
        const int preferredSize = SkTMax(width, height);
        try {
            host->SetPreferredSize(preferredSize);
            host->ValidateSizes();

            negative->ReadStage1Image(*host, *dngStream, *info);

            if (info->fMaskIndex != -1) {
                negative->ReadTransparencyMask(*host, *dngStream, *info);
            }

            negative->ValidateRawImageDigest(*host);
            if (negative->IsDamaged()) {
                return nullptr;
            }

            const int32 kMosaicPlane = -1;
            negative->BuildStage2Image(*host);
            negative->BuildStage3Image(*host, kMosaicPlane);

            dng_render render(*host, *negative);
            render.SetFinalSpace(dng_space_sRGB::Get());
            render.SetFinalPixelType(ttByte);

            dng_point stage3_size = negative->Stage3Image()->Size();
            render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v));

            return render.Render();
        } catch (...) {
            return nullptr;
        }
    }

    const SkImageInfo& getImageInfo() const {
        return fImageInfo;
    }

    bool isScalable() const {
        return fIsScalable;
    }

    bool isXtransImage() const {
        return fIsXtransImage;
    }

private:
    bool readDng() {
        // Due to the limit of DNG SDK, we need to reset host and info.
        fHost.reset(new dng_host(&fAllocator));
        fInfo.reset(new dng_info);
        fDngStream.reset(new SkDngStream(fStream));
        try {
            fHost->ValidateSizes();
            fInfo->Parse(*fHost, *fDngStream);
            fInfo->PostParse(*fHost);
            if (!fInfo->IsValidDNG()) {
                return false;
            }

            fNegative.reset(fHost->Make_dng_negative());
            fNegative->Parse(*fHost, *fDngStream, *fInfo);
            fNegative->PostParse(*fHost, *fDngStream, *fInfo);
            fNegative->SynchronizeMetadata();

            fImageInfo = SkImageInfo::Make(fNegative->DefaultCropSizeH().As_real64(),
                                           fNegative->DefaultCropSizeV().As_real64(),
                                           kN32_SkColorType, kOpaque_SkAlphaType);

            // The DNG SDK scales only for at demosaicing, so only when a mosaic info
            // is available also scale is available.
            fIsScalable = fNegative->GetMosaicInfo() != nullptr;
            fIsXtransImage = fIsScalable
                ? (fNegative->GetMosaicInfo()->fCFAPatternSize.v == 6
                   && fNegative->GetMosaicInfo()->fCFAPatternSize.h == 6)
                : false;
            return true;
        } catch (...) {
            fNegative.reset(nullptr);
            return false;
        }
    }

    SkDngImage(SkRawStream* stream)
        : fStream(stream) {}

    SkDngMemoryAllocator fAllocator;
    SkAutoTDelete<SkRawStream> fStream;
    SkAutoTDelete<dng_host> fHost;
    SkAutoTDelete<dng_info> fInfo;
    SkAutoTDelete<dng_negative> fNegative;
    SkAutoTDelete<dng_stream> fDngStream;

    SkImageInfo fImageInfo;
    bool fIsScalable;
    bool fIsXtransImage;
};

/*
 * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
 * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
 * fallback to create SkRawCodec for DNG images.
 */
SkCodec* SkRawCodec::NewFromStream(SkStream* stream) {
    SkAutoTDelete<SkRawStream> rawStream(new SkRawStream(stream));
    ::piex::PreviewImageData imageData;
    // FIXME: ::piex::GetPreviewImageData() calls GetData() frequently with small amounts,
    // resulting in many calls to bufferMoreData(). Could we make this more efficient by grouping
    // smaller requests together?
    if (::piex::IsRaw(rawStream.get())) {
        ::piex::Error error = ::piex::GetPreviewImageData(rawStream.get(), &imageData);

        if (error == ::piex::Error::kOk && imageData.preview_length > 0) {
#if !defined(GOOGLE3)
            // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
            // function call.
            // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
            SkMemoryStream* memoryStream =
                    rawStream->transferBuffer(imageData.preview_offset, imageData.preview_length);
            return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr;
#else
            return nullptr;
#endif
        } else if (error == ::piex::Error::kFail) {
            return nullptr;
        }
    }

    SkAutoTDelete<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
    if (!dngImage) {
        return nullptr;
    }

    return new SkRawCodec(dngImage.release());
}

SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst,
                                        size_t dstRowBytes, const Options& options,
                                        SkPMColor ctable[], int* ctableCount,
                                        int* rowsDecoded) {
    if (!conversion_possible(requestedInfo, this->getInfo())) {
        SkCodecPrintf("Error: cannot convert input type to output type.\n");
        return kInvalidConversion;
    }

    SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(
            SkSwizzler::kRGB, nullptr, requestedInfo, options));
    SkASSERT(swizzler);

    const int width = requestedInfo.width();
    const int height = requestedInfo.height();
    SkAutoTDelete<dng_image> image(fDngImage->render(width, height));
    if (!image) {
        return kInvalidInput;
    }

    // Because the DNG SDK can not guarantee to render to requested size, we allow a small
    // difference. Only the overlapping region will be converted.
    const float maxDiffRatio = 1.03f;
    const dng_point& imageSize = image->Size();
    if (imageSize.h / width > maxDiffRatio || imageSize.h < width ||
        imageSize.v / height > maxDiffRatio || imageSize.v < height) {
        return SkCodec::kInvalidScale;
    }

    void* dstRow = dst;
    uint8_t srcRow[width * 3];

    dng_pixel_buffer buffer;
    buffer.fData = &srcRow[0];
    buffer.fPlane = 0;
    buffer.fPlanes = 3;
    buffer.fColStep = buffer.fPlanes;
    buffer.fPlaneStep = 1;
    buffer.fPixelType = ttByte;
    buffer.fPixelSize = sizeof(uint8_t);
    buffer.fRowStep = sizeof(srcRow);

    for (int i = 0; i < height; ++i) {
        buffer.fArea = dng_rect(i, 0, i + 1, width);

        try {
            image->Get(buffer, dng_image::edge_zero);
        } catch (...) {
            *rowsDecoded = i;
            return kIncompleteInput; 
        }

        swizzler->swizzle(dstRow, &srcRow[0]);
        dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
    }
    return kSuccess;
}

SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
    SkASSERT(desiredScale <= 1.f);
    const SkISize dim = this->getInfo().dimensions();
    if (!fDngImage->isScalable()) {
        return dim;
    }

    // Limits the minimum size to be 80 on the short edge.
    const float shortEdge = SkTMin(dim.fWidth, dim.fHeight);
    if (desiredScale < 80.f / shortEdge) {
        desiredScale = 80.f / shortEdge;
    }

    // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
    // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
    if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
        desiredScale = 1.f / 3.f;
    }

    // Round to integer-factors.
    const float finalScale = std::floor(1.f/ desiredScale);
    return SkISize::Make(std::floor(dim.fWidth / finalScale),
                         std::floor(dim.fHeight / finalScale));
}

bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
    const SkISize fullDim = this->getInfo().dimensions();
    const float fullShortEdge = SkTMin(fullDim.fWidth, fullDim.fHeight);
    const float shortEdge = SkTMin(dim.fWidth, dim.fHeight);

    SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
    SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
    return sizeFloor == dim || sizeCeil == dim;
}

SkRawCodec::~SkRawCodec() {}

SkRawCodec::SkRawCodec(SkDngImage* dngImage)
    : INHERITED(dngImage->getImageInfo(), nullptr)
    , fDngImage(dngImage) {}