aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/codec/SkRawCodec.cpp
blob: 208bd8952d1be3186f6acb711518296e0833c7fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkCodec.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkData.h"
#include "SkJpegCodec.h"
#include "SkMutex.h"
#include "SkRawCodec.h"
#include "SkRefCnt.h"
#include "SkStream.h"
#include "SkStreamPriv.h"
#include "SkSwizzler.h"
#include "SkTArray.h"
#include "SkTaskGroup.h"
#include "SkTemplates.h"
#include "SkTypes.h"

#include "dng_area_task.h"
#include "dng_color_space.h"
#include "dng_errors.h"
#include "dng_exceptions.h"
#include "dng_host.h"
#include "dng_info.h"
#include "dng_memory.h"
#include "dng_render.h"
#include "dng_stream.h"

#include "src/piex.h"

#include <cmath>  // for std::round,floor,ceil
#include <limits>

namespace {

// Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal
// directions.
dng_point num_tiles_in_area(const dng_point &areaSize,
                            const dng_point_real64 &tileSize) {
  // FIXME: Add a ceil_div() helper in SkCodecPriv.h
  return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
                   static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
}

int num_tasks_required(const dng_point& tilesInTask,
                         const dng_point& tilesInArea) {
  return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
         ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
}

// Calculate the number of tiles to process per task, taking into account the maximum number of
// tasks. It prefers to increase horizontally for better locality of reference.
dng_point num_tiles_per_task(const int maxTasks,
                             const dng_point &tilesInArea) {
  dng_point tilesInTask = {1, 1};
  while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
      if (tilesInTask.h < tilesInArea.h) {
          ++tilesInTask.h;
      } else if (tilesInTask.v < tilesInArea.v) {
          ++tilesInTask.v;
      } else {
          ThrowProgramError("num_tiles_per_task calculation is wrong.");
      }
  }
  return tilesInTask;
}

std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
                                         const dng_point& tileSize) {
  std::vector<dng_rect> taskAreas;
  const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
  const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
  const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
                                    tilesPerTask.h * tileSize.h};
  for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
    for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
      dng_rect taskArea;
      taskArea.t = area.t + v * tileSize.v;
      taskArea.l = area.l + h * tileSize.h;
      taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
      taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);

      taskAreas.push_back(taskArea);
    }
  }
  return taskAreas;
}

class SkDngHost : public dng_host {
public:
    explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}

    void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
        // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the
        // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32
        // sub-tasks depending on the architecture.
        const int maxTasks = static_cast<int>(task.MaxThreads());

        SkTaskGroup taskGroup;

        // tileSize is typically 256x256
        const dng_point tileSize(task.FindTileSize(area));
        const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize);
        const int numTasks = static_cast<int>(taskAreas.size());

        SkMutex mutex;
        SkTArray<dng_exception> exceptions;
        task.Start(numTasks, tileSize, &Allocator(), Sniffer());
        for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
            taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
                try {
                    task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
                } catch (dng_exception& exception) {
                    SkAutoMutexAcquire lock(mutex);
                    exceptions.push_back(exception);
                } catch (...) {
                    SkAutoMutexAcquire lock(mutex);
                    exceptions.push_back(dng_exception(dng_error_unknown));
                }
            });
        }

        taskGroup.wait();
        task.Finish(numTasks);

        // Currently we only re-throw the first catched exception.
        if (!exceptions.empty()) {
            Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
        }
    }

    uint32 PerformAreaTaskThreads() override {
        // FIXME: Need to get the real amount of available threads used in the SkTaskGroup.
        return kMaxMPThreads;
    }

private:
    typedef dng_host INHERITED;
};

// T must be unsigned type.
template <class T>
bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
    SkASSERT(arg1 >= 0);
    SkASSERT(arg2 >= 0);
    if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
        T sum = arg1 + arg2;
        if (sum <= std::numeric_limits<size_t>::max()) {
            *result = static_cast<size_t>(sum);
            return true;
        }
    }
    return false;
}

class SkDngMemoryAllocator : public dng_memory_allocator {
public:
    ~SkDngMemoryAllocator() override {}

    dng_memory_block* Allocate(uint32 size) override {
        // To avoid arbitary allocation requests which might lead to out-of-memory, limit the
        // amount of memory that can be allocated at once. The memory limit is based on experiments
        // and supposed to be sufficient for all valid DNG images.
        if (size > 300 * 1024 * 1024) {  // 300 MB
            ThrowMemoryFull();
        }
        return dng_memory_allocator::Allocate(size);
    }
};

bool is_asset_stream(const SkStream& stream) {
    return stream.hasLength() && stream.hasPosition();
}

}  // namespace

class SkRawStream {
public:
    virtual ~SkRawStream() {}

   /* 
    * Gets the length of the stream. Depending on the type of stream, this may require reading to
    * the end of the stream.
    */
   virtual uint64 getLength() = 0;

   virtual bool read(void* data, size_t offset, size_t length) = 0;

    /*
     * Creates an SkMemoryStream from the offset with size.
     * Note: for performance reason, this function is destructive to the SkRawStream. One should
     *       abandon current object after the function call.
     */
   virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0;
};

class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
public:
    virtual ~SkRawLimitedDynamicMemoryWStream() {}

    bool write(const void* buffer, size_t size) override {
        size_t newSize;
        if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
            newSize > kMaxStreamSize)
        {
            SkCodecPrintf("Error: Stream size exceeds the limit.\n");
            return false;
        }
        return this->INHERITED::write(buffer, size);
    }

private:
    // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
    // streaming too large data chunk. We can always adjust the limit here if we need.
    const size_t kMaxStreamSize = 100 * 1024 * 1024;  // 100MB

    typedef SkDynamicMemoryWStream INHERITED;
};

// Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
class SkRawBufferedStream : public SkRawStream {
public:
    // Will take the ownership of the stream.
    explicit SkRawBufferedStream(SkStream* stream)
        : fStream(stream)
        , fWholeStreamRead(false)
    {
        // Only use SkRawBufferedStream when the stream is not an asset stream.
        SkASSERT(!is_asset_stream(*stream));
    }

    ~SkRawBufferedStream() override {}

    uint64 getLength() override {
        if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream
            ThrowReadFile();
        }
        return fStreamBuffer.bytesWritten();
    }

    bool read(void* data, size_t offset, size_t length) override {
        if (length == 0) {
            return true;
        }

        size_t sum;
        if (!safe_add_to_size_t(offset, length, &sum)) {
            return false;
        }

        return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
    }

    SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
        SkAutoTUnref<SkData> data(SkData::NewUninitialized(size));
        if (offset > fStreamBuffer.bytesWritten()) {
            // If the offset is not buffered, read from fStream directly and skip the buffering.
            const size_t skipLength = offset - fStreamBuffer.bytesWritten();
            if (fStream->skip(skipLength) != skipLength) {
                return nullptr;
            }
            const size_t bytesRead = fStream->read(data->writable_data(), size);
            if (bytesRead < size) {
                data.reset(SkData::NewSubset(data.get(), 0, bytesRead));
            }
        } else {
            const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size);
            if (alreadyBuffered > 0 &&
                !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
                return nullptr;
            }

            const size_t remaining = size - alreadyBuffered;
            if (remaining) {
                auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
                const size_t bytesRead = fStream->read(dst, remaining);
                size_t newSize;
                if (bytesRead < remaining) {
                    if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
                        return nullptr;
                    }
                    data.reset(SkData::NewSubset(data.get(), 0, newSize));
                }
            }
        }
        return new SkMemoryStream(data);
    }

private:
    // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
    bool bufferMoreData(size_t newSize) {
        if (newSize == kReadToEnd) {
            if (fWholeStreamRead) {  // already read-to-end.
                return true;
            }

            // TODO: optimize for the special case when the input is SkMemoryStream.
            return SkStreamCopy(&fStreamBuffer, fStream.get());
        }

        if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize
            return true;
        }
        if (fWholeStreamRead) {  // newSize is larger than the whole stream.
            return false;
        }

        // Try to read at least 8192 bytes to avoid to many small reads.
        const size_t kMinSizeToRead = 8192;
        const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
        const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested);
        SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
        const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
        if (bytesRead < sizeRequested) {
            return false;
        }
        return fStreamBuffer.write(tempBuffer.get(), bytesRead);
    }

    SkAutoTDelete<SkStream> fStream;
    bool fWholeStreamRead;

    // Use a size-limited stream to avoid holding too huge buffer.
    SkRawLimitedDynamicMemoryWStream fStreamBuffer;

    const size_t kReadToEnd = 0;
};

class SkRawAssetStream : public SkRawStream {
public:
    // Will take the ownership of the stream.
    explicit SkRawAssetStream(SkStream* stream)
        : fStream(stream)
    {
        // Only use SkRawAssetStream when the stream is an asset stream.
        SkASSERT(is_asset_stream(*stream));
    }

    ~SkRawAssetStream() override {}

    uint64 getLength() override {
        return fStream->getLength();
    }


    bool read(void* data, size_t offset, size_t length) override {
        if (length == 0) {
            return true;
        }

        size_t sum;
        if (!safe_add_to_size_t(offset, length, &sum)) {
            return false;
        }

        return fStream->seek(offset) && (fStream->read(data, length) == length);
    }

    SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
        if (fStream->getLength() < offset) {
            return nullptr;
        }

        size_t sum;
        if (!safe_add_to_size_t(offset, size, &sum)) {
            return nullptr;
        }

        // This will allow read less than the requested "size", because the JPEG codec wants to
        // handle also a partial JPEG file.
        const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset;
        if (bytesToRead == 0) {
            return nullptr;
        }

        if (fStream->getMemoryBase()) {  // directly copy if getMemoryBase() is available.
            SkAutoTUnref<SkData> data(SkData::NewWithCopy(
                static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
            fStream.free();
            return new SkMemoryStream(data);
        } else {
            SkAutoTUnref<SkData> data(SkData::NewUninitialized(bytesToRead));
            if (!fStream->seek(offset)) {
                return nullptr;
            }
            const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
            if (bytesRead < bytesToRead) {
                data.reset(SkData::NewSubset(data.get(), 0, bytesRead));
            }
            return new SkMemoryStream(data);
        }
    }
private:
    SkAutoTDelete<SkStream> fStream;
};

class SkPiexStream : public ::piex::StreamInterface {
public:
    // Will NOT take the ownership of the stream.
    explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}

    ~SkPiexStream() override {}

    ::piex::Error GetData(const size_t offset, const size_t length,
                          uint8* data) override {
        return fStream->read(static_cast<void*>(data), offset, length) ?
            ::piex::Error::kOk : ::piex::Error::kFail;
    }

private:
    SkRawStream* fStream;
};

class SkDngStream : public dng_stream {
public:
    // Will NOT take the ownership of the stream.
    SkDngStream(SkRawStream* stream) : fStream(stream) {}

    ~SkDngStream() override {}

    uint64 DoGetLength() override { return fStream->getLength(); }

    void DoRead(void* data, uint32 count, uint64 offset) override {
        size_t sum;
        if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
            !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
            ThrowReadFile();
        }
    }

private:
    SkRawStream* fStream;
};

class SkDngImage {
public:
    /*
     * Initializes the object with the information from Piex in a first attempt. This way it can
     * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
     * which is essential for the demosaicing of the sensor image.
     * Note: this will take the ownership of the stream.
     */
    static SkDngImage* NewFromStream(SkRawStream* stream) {
        SkAutoTDelete<SkDngImage> dngImage(new SkDngImage(stream));
        if (!dngImage->isTiffHeaderValid()) {
            return nullptr;
        }

        if (!dngImage->initFromPiex()) {
            if (!dngImage->readDng()) {
                return nullptr;
            }
        }

        return dngImage.release();
    }

    /*
     * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
     * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
     * but there is no guarantee that any of the edges will match the requested size. E.g.
     *   100% size:              4000 x 3000
     *   requested size:         1600 x 1200
     *   returned size could be: 2000 x 1500
     */
    dng_image* render(int width, int height) {
        if (!fHost || !fInfo || !fNegative || !fDngStream) {
            if (!this->readDng()) {
                return nullptr;
            }
        }

        // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
        const int preferredSize = SkTMax(width, height);
        try {
            // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
            SkAutoTDelete<dng_host> host(fHost.release());
            SkAutoTDelete<dng_info> info(fInfo.release());
            SkAutoTDelete<dng_negative> negative(fNegative.release());
            SkAutoTDelete<dng_stream> dngStream(fDngStream.release());

            host->SetPreferredSize(preferredSize);
            host->ValidateSizes();

            negative->ReadStage1Image(*host, *dngStream, *info);

            if (info->fMaskIndex != -1) {
                negative->ReadTransparencyMask(*host, *dngStream, *info);
            }

            negative->ValidateRawImageDigest(*host);
            if (negative->IsDamaged()) {
                return nullptr;
            }

            const int32 kMosaicPlane = -1;
            negative->BuildStage2Image(*host);
            negative->BuildStage3Image(*host, kMosaicPlane);

            dng_render render(*host, *negative);
            render.SetFinalSpace(dng_space_sRGB::Get());
            render.SetFinalPixelType(ttByte);

            dng_point stage3_size = negative->Stage3Image()->Size();
            render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v));

            return render.Render();
        } catch (...) {
            return nullptr;
        }
    }

    const SkImageInfo& getImageInfo() const {
        return fImageInfo;
    }

    bool isScalable() const {
        return fIsScalable;
    }

    bool isXtransImage() const {
        return fIsXtransImage;
    }

private:
    // Quick check if the image contains a valid TIFF header as requested by DNG format.
    bool isTiffHeaderValid() const {
        const size_t kHeaderSize = 4;
        SkAutoSTMalloc<kHeaderSize, unsigned char> header(kHeaderSize);
        if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) {
            return false;
        }

        // Check if the header is valid (endian info and magic number "42").
        return
            (header[0] == 0x49 && header[1] == 0x49 && header[2] == 0x2A && header[3] == 0x00) ||
            (header[0] == 0x4D && header[1] == 0x4D && header[2] == 0x00 && header[3] == 0x2A);
    }

    void init(const int width, const int height, const dng_point& cfaPatternSize) {
        fImageInfo = SkImageInfo::Make(width, height, kN32_SkColorType, kOpaque_SkAlphaType);

        // The DNG SDK scales only during demosaicing, so scaling is only possible when
        // a mosaic info is available.
        fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
        fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
    }

    bool initFromPiex() {
        // Does not take the ownership of rawStream.
        SkPiexStream piexStream(fStream.get());
        ::piex::PreviewImageData imageData;
        if (::piex::IsRaw(&piexStream)
            && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
        {
            // Verify the size information, as it is only optional information for PIEX.
            if (imageData.full_width == 0 || imageData.full_height == 0) {
                return false;
            }

            dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
            this->init(static_cast<int>(imageData.full_width),
                       static_cast<int>(imageData.full_height), cfaPatternSize);
            return true;
        }
        return false;
    }

    bool readDng() {
        try {
            // Due to the limit of DNG SDK, we need to reset host and info.
            fHost.reset(new SkDngHost(&fAllocator));
            fInfo.reset(new dng_info);
            fDngStream.reset(new SkDngStream(fStream));

            fHost->ValidateSizes();
            fInfo->Parse(*fHost, *fDngStream);
            fInfo->PostParse(*fHost);
            if (!fInfo->IsValidDNG()) {
                return false;
            }

            fNegative.reset(fHost->Make_dng_negative());
            fNegative->Parse(*fHost, *fDngStream, *fInfo);
            fNegative->PostParse(*fHost, *fDngStream, *fInfo);
            fNegative->SynchronizeMetadata();

            dng_point cfaPatternSize(0, 0);
            if (fNegative->GetMosaicInfo() != nullptr) {
                cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
            }
            this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
                       static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
                       cfaPatternSize);
            return true;
        } catch (...) {
            return false;
        }
    }

    SkDngImage(SkRawStream* stream)
        : fStream(stream) {}

    SkDngMemoryAllocator fAllocator;
    SkAutoTDelete<SkRawStream> fStream;
    SkAutoTDelete<dng_host> fHost;
    SkAutoTDelete<dng_info> fInfo;
    SkAutoTDelete<dng_negative> fNegative;
    SkAutoTDelete<dng_stream> fDngStream;

    SkImageInfo fImageInfo;
    bool fIsScalable;
    bool fIsXtransImage;
};

/*
 * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
 * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
 * fallback to create SkRawCodec for DNG images.
 */
SkCodec* SkRawCodec::NewFromStream(SkStream* stream) {
    SkAutoTDelete<SkRawStream> rawStream;
    if (is_asset_stream(*stream)) {
        rawStream.reset(new SkRawAssetStream(stream));
    } else {
        rawStream.reset(new SkRawBufferedStream(stream));
    }

    // Does not take the ownership of rawStream.
    SkPiexStream piexStream(rawStream.get());
    ::piex::PreviewImageData imageData;
    if (::piex::IsRaw(&piexStream)) {
        ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);

        if (error == ::piex::Error::kOk && imageData.preview.length > 0) {
            // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
            // function call.
            // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
            SkMemoryStream* memoryStream =
                rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length);
            return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr;
        } else if (error == ::piex::Error::kFail) {
            return nullptr;
        }
    }

    // Takes the ownership of the rawStream.
    SkAutoTDelete<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
    if (!dngImage) {
        return nullptr;
    }

    return new SkRawCodec(dngImage.release());
}

SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst,
                                        size_t dstRowBytes, const Options& options,
                                        SkPMColor ctable[], int* ctableCount,
                                        int* rowsDecoded) {
    if (!conversion_possible(requestedInfo, this->getInfo())) {
        SkCodecPrintf("Error: cannot convert input type to output type.\n");
        return kInvalidConversion;
    }

    SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(
            SkSwizzler::kRGB, nullptr, requestedInfo, options));
    SkASSERT(swizzler);

    const int width = requestedInfo.width();
    const int height = requestedInfo.height();
    SkAutoTDelete<dng_image> image(fDngImage->render(width, height));
    if (!image) {
        return kInvalidInput;
    }

    // Because the DNG SDK can not guarantee to render to requested size, we allow a small
    // difference. Only the overlapping region will be converted.
    const float maxDiffRatio = 1.03f;
    const dng_point& imageSize = image->Size();
    if (imageSize.h / width > maxDiffRatio || imageSize.h < width ||
        imageSize.v / height > maxDiffRatio || imageSize.v < height) {
        return SkCodec::kInvalidScale;
    }

    void* dstRow = dst;
    SkAutoTMalloc<uint8_t> srcRow(width * 3);

    dng_pixel_buffer buffer;
    buffer.fData = &srcRow[0];
    buffer.fPlane = 0;
    buffer.fPlanes = 3;
    buffer.fColStep = buffer.fPlanes;
    buffer.fPlaneStep = 1;
    buffer.fPixelType = ttByte;
    buffer.fPixelSize = sizeof(uint8_t);
    buffer.fRowStep = width * 3;

    for (int i = 0; i < height; ++i) {
        buffer.fArea = dng_rect(i, 0, i + 1, width);

        try {
            image->Get(buffer, dng_image::edge_zero);
        } catch (...) {
            *rowsDecoded = i;
            return kIncompleteInput; 
        }

        swizzler->swizzle(dstRow, &srcRow[0]);
        dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
    }
    return kSuccess;
}

SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
    SkASSERT(desiredScale <= 1.f);

    const SkISize dim = this->getInfo().dimensions();
    SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);

    if (!fDngImage->isScalable()) {
        return dim;
    }

    // Limits the minimum size to be 80 on the short edge.
    const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
    if (desiredScale < 80.f / shortEdge) {
        desiredScale = 80.f / shortEdge;
    }

    // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
    // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
    if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
        desiredScale = 1.f / 3.f;
    }

    // Round to integer-factors.
    const float finalScale = std::floor(1.f/ desiredScale);
    return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
                         static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
}

bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
    const SkISize fullDim = this->getInfo().dimensions();
    const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight));
    const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));

    SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
    SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
    return sizeFloor == dim || sizeCeil == dim;
}

SkRawCodec::~SkRawCodec() {}

SkRawCodec::SkRawCodec(SkDngImage* dngImage)
    : INHERITED(dngImage->getImageInfo(), nullptr)
    , fDngImage(dngImage) {}