1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCodec_libbmp.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkStream.h"
/*
*
* Checks if the conversion between the input image and the requested output
* image has been implemented
*
*/
static bool conversion_possible(const SkImageInfo& dst,
const SkImageInfo& src) {
// Ensure that the profile type is unchanged
if (dst.profileType() != src.profileType()) {
return false;
}
// Check for supported color and alpha types
switch (dst.colorType()) {
case kN32_SkColorType:
return src.alphaType() == dst.alphaType() ||
(kPremul_SkAlphaType == dst.alphaType() &&
kUnpremul_SkAlphaType == src.alphaType());
case kRGB_565_SkColorType:
return src.alphaType() == dst.alphaType() &&
kOpaque_SkAlphaType == dst.alphaType();
default:
return false;
}
}
/*
*
* Defines the version and type of the second bitmap header
*
*/
enum BitmapHeaderType {
kInfoV1_BitmapHeaderType,
kInfoV2_BitmapHeaderType,
kInfoV3_BitmapHeaderType,
kInfoV4_BitmapHeaderType,
kInfoV5_BitmapHeaderType,
kOS2V1_BitmapHeaderType,
kOS2VX_BitmapHeaderType,
kUnknown_BitmapHeaderType
};
/*
*
* Possible bitmap compression types
*
*/
enum BitmapCompressionMethod {
kNone_BitmapCompressionMethod = 0,
k8BitRLE_BitmapCompressionMethod = 1,
k4BitRLE_BitmapCompressionMethod = 2,
kBitMasks_BitmapCompressionMethod = 3,
kJpeg_BitmapCompressionMethod = 4,
kPng_BitmapCompressionMethod = 5,
kAlphaBitMasks_BitmapCompressionMethod = 6,
kCMYK_BitmapCompressionMethod = 11,
kCMYK8BitRLE_BitmapCompressionMethod = 12,
kCMYK4BitRLE_BitmapCompressionMethod = 13
};
/*
*
* Checks the start of the stream to see if the image is a bitmap
*
*/
bool SkBmpCodec::IsBmp(SkStream* stream) {
// TODO: Support "IC", "PT", "CI", "CP", "BA"
// TODO: ICO files may contain a BMP and need to use this decoder
const char bmpSig[] = { 'B', 'M' };
char buffer[sizeof(bmpSig)];
return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) &&
!memcmp(buffer, bmpSig, sizeof(bmpSig));
}
/*
*
* Assumes IsBmp was called and returned true
* Creates a bitmap decoder
* Reads enough of the stream to determine the image format
*
*/
SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) {
// Header size constants
static const uint32_t kBmpHeaderBytes = 14;
static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4;
static const uint32_t kBmpOS2V1Bytes = 12;
static const uint32_t kBmpOS2V2Bytes = 64;
static const uint32_t kBmpInfoBaseBytes = 16;
static const uint32_t kBmpInfoV1Bytes = 40;
static const uint32_t kBmpInfoV2Bytes = 52;
static const uint32_t kBmpInfoV3Bytes = 56;
static const uint32_t kBmpInfoV4Bytes = 108;
static const uint32_t kBmpInfoV5Bytes = 124;
static const uint32_t kBmpMaskBytes = 12;
// Read the first header and the size of the second header
SkAutoTDeleteArray<uint8_t> hBuffer(
SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour));
if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) !=
kBmpHeaderBytesPlusFour) {
SkDebugf("Error: unable to read first bitmap header.\n");
return NULL;
}
// The total bytes in the bmp file
// We only need to use this value for RLE decoding, so we will only check
// that it is valid in the RLE case.
const uint32_t totalBytes = get_int(hBuffer.get(), 2);
// The offset from the start of the file where the pixel data begins
const uint32_t offset = get_int(hBuffer.get(), 10);
if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) {
SkDebugf("Error: invalid starting location for pixel data\n");
return NULL;
}
// The size of the second (info) header in bytes
// The size is the first field of the second header, so we have already
// read the first four infoBytes.
const uint32_t infoBytes = get_int(hBuffer.get(), 14);
if (infoBytes < kBmpOS2V1Bytes) {
SkDebugf("Error: invalid second header size.\n");
return NULL;
}
const uint32_t infoBytesRemaining = infoBytes - 4;
hBuffer.free();
// Read the second header
SkAutoTDeleteArray<uint8_t> iBuffer(
SkNEW_ARRAY(uint8_t, infoBytesRemaining));
if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) {
SkDebugf("Error: unable to read second bitmap header.\n");
return NULL;
}
// The number of bits used per pixel in the pixel data
uint16_t bitsPerPixel;
// The compression method for the pixel data
uint32_t compression = kNone_BitmapCompressionMethod;
// Number of colors in the color table, defaults to 0 or max (see below)
uint32_t numColors = 0;
// Bytes per color in the color table, early versions use 3, most use 4
uint32_t bytesPerColor;
// The image width and height
int width, height;
// Determine image information depending on second header format
BitmapHeaderType headerType;
if (infoBytes >= kBmpInfoBaseBytes) {
// Check the version of the header
switch (infoBytes) {
case kBmpInfoV1Bytes:
headerType = kInfoV1_BitmapHeaderType;
break;
case kBmpInfoV2Bytes:
headerType = kInfoV2_BitmapHeaderType;
break;
case kBmpInfoV3Bytes:
headerType = kInfoV3_BitmapHeaderType;
break;
case kBmpInfoV4Bytes:
headerType = kInfoV4_BitmapHeaderType;
break;
case kBmpInfoV5Bytes:
headerType = kInfoV5_BitmapHeaderType;
break;
case 16:
case 20:
case 24:
case 28:
case 32:
case 36:
case 42:
case 46:
case 48:
case 60:
case kBmpOS2V2Bytes:
headerType = kOS2VX_BitmapHeaderType;
break;
default:
// We do not signal an error here because there is the
// possibility of new or undocumented bmp header types. Most
// of the newer versions of bmp headers are similar to and
// build off of the older versions, so we may still be able to
// decode the bmp.
SkDebugf("Warning: unknown bmp header format.\n");
headerType = kUnknown_BitmapHeaderType;
break;
}
// We check the size of the header before entering the if statement.
// We should not reach this point unless the size is large enough for
// these required fields.
SkASSERT(infoBytesRemaining >= 12);
width = get_int(iBuffer.get(), 0);
height = get_int(iBuffer.get(), 4);
bitsPerPixel = get_short(iBuffer.get(), 10);
// Some versions do not have these fields, so we check before
// overwriting the default value.
if (infoBytesRemaining >= 16) {
compression = get_int(iBuffer.get(), 12);
if (infoBytesRemaining >= 32) {
numColors = get_int(iBuffer.get(), 28);
}
}
// All of the headers that reach this point, store color table entries
// using 4 bytes per pixel.
bytesPerColor = 4;
} else if (infoBytes >= kBmpOS2V1Bytes) {
// The OS2V1 is treated separately because it has a unique format
headerType = kOS2V1_BitmapHeaderType;
width = (int) get_short(iBuffer.get(), 0);
height = (int) get_short(iBuffer.get(), 2);
bitsPerPixel = get_short(iBuffer.get(), 6);
bytesPerColor = 3;
} else {
// There are no valid bmp headers
SkDebugf("Error: second bitmap header size is invalid.\n");
return NULL;
}
// Check for valid dimensions from header
RowOrder rowOrder = kBottomUp_RowOrder;
if (height < 0) {
height = -height;
rowOrder = kTopDown_RowOrder;
}
static const int kBmpMaxDim = 1 << 16;
if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) {
// TODO: Decide if we want to support really large bmps.
SkDebugf("Error: invalid bitmap dimensions.\n");
return NULL;
}
// Create mask struct
SkMasks::InputMasks inputMasks;
memset(&inputMasks, 0, sizeof(SkMasks::InputMasks));
// Determine the input compression format and set bit masks if necessary
uint32_t maskBytes = 0;
BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat;
switch (compression) {
case kNone_BitmapCompressionMethod:
inputFormat = kStandard_BitmapInputFormat;
break;
case k8BitRLE_BitmapCompressionMethod:
if (bitsPerPixel != 8) {
SkDebugf("Warning: correcting invalid bitmap format.\n");
bitsPerPixel = 8;
}
inputFormat = kRLE_BitmapInputFormat;
break;
case k4BitRLE_BitmapCompressionMethod:
if (bitsPerPixel != 4) {
SkDebugf("Warning: correcting invalid bitmap format.\n");
bitsPerPixel = 4;
}
inputFormat = kRLE_BitmapInputFormat;
break;
case kAlphaBitMasks_BitmapCompressionMethod:
case kBitMasks_BitmapCompressionMethod:
// Load the masks
inputFormat = kBitMask_BitmapInputFormat;
switch (headerType) {
case kInfoV1_BitmapHeaderType: {
// The V1 header stores the bit masks after the header
SkAutoTDeleteArray<uint8_t> mBuffer(
SkNEW_ARRAY(uint8_t, kBmpMaskBytes));
if (stream->read(mBuffer.get(), kBmpMaskBytes) !=
kBmpMaskBytes) {
SkDebugf("Error: unable to read bit inputMasks.\n");
return NULL;
}
maskBytes = kBmpMaskBytes;
inputMasks.red = get_int(mBuffer.get(), 0);
inputMasks.green = get_int(mBuffer.get(), 4);
inputMasks.blue = get_int(mBuffer.get(), 8);
break;
}
case kInfoV2_BitmapHeaderType:
case kInfoV3_BitmapHeaderType:
case kInfoV4_BitmapHeaderType:
case kInfoV5_BitmapHeaderType:
// Header types are matched based on size. If the header
// is V2+, we are guaranteed to be able to read at least
// this size.
SkASSERT(infoBytesRemaining >= 48);
inputMasks.red = get_int(iBuffer.get(), 36);
inputMasks.green = get_int(iBuffer.get(), 40);
inputMasks.blue = get_int(iBuffer.get(), 44);
break;
case kOS2VX_BitmapHeaderType:
// TODO: Decide if we intend to support this.
// It is unsupported in the previous version and
// in chromium. I have not come across a test case
// that uses this format.
SkDebugf("Error: huffman format unsupported.\n");
return NULL;
default:
SkDebugf("Error: invalid bmp bit masks header.\n");
return NULL;
}
break;
case kJpeg_BitmapCompressionMethod:
if (24 == bitsPerPixel) {
inputFormat = kRLE_BitmapInputFormat;
break;
}
// Fall through
case kPng_BitmapCompressionMethod:
// TODO: Decide if we intend to support this.
// It is unsupported in the previous version and
// in chromium. I think it is used mostly for printers.
SkDebugf("Error: compression format not supported.\n");
return NULL;
case kCMYK_BitmapCompressionMethod:
case kCMYK8BitRLE_BitmapCompressionMethod:
case kCMYK4BitRLE_BitmapCompressionMethod:
// TODO: Same as above.
SkDebugf("Error: CMYK not supported for bitmap decoding.\n");
return NULL;
default:
SkDebugf("Error: invalid format for bitmap decoding.\n");
return NULL;
}
// Most versions of bmps should be rendered as opaque. Either they do
// not have an alpha channel, or they expect the alpha channel to be
// ignored. V4+ bmp files introduce an alpha mask and allow the creator
// of the image to use the alpha channels. However, many of these images
// leave the alpha channel blank and expect to be rendered as opaque. For
// this reason, we set the alpha type to kUnknown for V4+ bmps and figure
// out the alpha type during the decode.
SkAlphaType alphaType = kOpaque_SkAlphaType;
if (kInfoV4_BitmapHeaderType == headerType ||
kInfoV5_BitmapHeaderType == headerType) {
// Header types are matched based on size. If the header is
// V4+, we are guaranteed to be able to read at least this size.
SkASSERT(infoBytesRemaining > 52);
inputMasks.alpha = get_int(iBuffer.get(), 48);
if (inputMasks.alpha != 0) {
alphaType = kUnpremul_SkAlphaType;
}
}
iBuffer.free();
// Check for valid bits per pixel input
switch (bitsPerPixel) {
// In addition to more standard pixel compression formats, bmp supports
// the use of bit masks to determine pixel components. The standard
// format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB),
// which does not map well to any Skia color formats. For this reason,
// we will always enable mask mode with 16 bits per pixel.
case 16:
if (kBitMask_BitmapInputFormat != inputFormat) {
inputMasks.red = 0x7C00;
inputMasks.green = 0x03E0;
inputMasks.blue = 0x001F;
inputFormat = kBitMask_BitmapInputFormat;
}
break;
case 1:
case 2:
case 4:
case 8:
case 24:
case 32:
break;
default:
SkDebugf("Error: invalid input value for bits per pixel.\n");
return NULL;
}
// Check that input bit masks are valid and create the masks object
SkAutoTDelete<SkMasks>
masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel));
if (NULL == masks) {
SkDebugf("Error: invalid input masks.\n");
return NULL;
}
// Check for a valid number of total bytes when in RLE mode
if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) {
SkDebugf("Error: RLE requires valid input size.\n");
return NULL;
}
const size_t RLEBytes = totalBytes - offset;
// Calculate the number of bytes read so far
const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes;
if (offset < bytesRead) {
SkDebugf("Error: pixel data offset less than header size.\n");
return NULL;
}
// Return the codec
// We will use ImageInfo to store width, height, and alpha type. We will
// set color type to kN32_SkColorType because that should be the default
// output.
const SkImageInfo& imageInfo = SkImageInfo::Make(width, height,
kN32_SkColorType, alphaType);
return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel,
inputFormat, masks.detach(), numColors,
bytesPerColor, offset - bytesRead,
rowOrder, RLEBytes));
}
/*
*
* Creates an instance of the decoder
* Called only by NewFromStream
*
*/
SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream,
uint16_t bitsPerPixel, BitmapInputFormat inputFormat,
SkMasks* masks, uint32_t numColors,
uint32_t bytesPerColor, uint32_t offset,
RowOrder rowOrder, size_t RLEBytes)
: INHERITED(info, stream)
, fBitsPerPixel(bitsPerPixel)
, fInputFormat(inputFormat)
, fMasks(masks)
, fColorTable(NULL)
, fNumColors(numColors)
, fBytesPerColor(bytesPerColor)
, fOffset(offset)
, fRowOrder(rowOrder)
, fRLEBytes(RLEBytes)
{}
/*
*
* Initiates the bitmap decode
*
*/
SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options&,
SkPMColor*, int*) {
// Check for proper input and output formats
if (!this->rewindIfNeeded()) {
return kCouldNotRewind;
}
if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) {
SkDebugf("Error: scaling not supported.\n");
return kInvalidScale;
}
if (!conversion_possible(dstInfo, this->getOriginalInfo())) {
SkDebugf("Error: cannot convert input type to output type.\n");
return kInvalidConversion;
}
// Create the color table if necessary and prepare the stream for decode
if (!createColorTable(dstInfo.alphaType())) {
SkDebugf("Error: could not create color table.\n");
return kInvalidInput;
}
// Perform the decode
switch (fInputFormat) {
case kBitMask_BitmapInputFormat:
return decodeMask(dstInfo, dst, dstRowBytes);
case kRLE_BitmapInputFormat:
return decodeRLE(dstInfo, dst, dstRowBytes);
case kStandard_BitmapInputFormat:
return decode(dstInfo, dst, dstRowBytes);
default:
SkASSERT(false);
return kInvalidInput;
}
}
/*
*
* Process the color table for the bmp input
*
*/
bool SkBmpCodec::createColorTable(SkAlphaType alphaType) {
// Allocate memory for color table
uint32_t colorBytes = 0;
uint32_t maxColors = 0;
SkPMColor colorTable[256];
if (fBitsPerPixel <= 8) {
// Zero is a default for maxColors
// Also set fNumColors to maxColors when it is too large
maxColors = 1 << fBitsPerPixel;
if (fNumColors == 0 || fNumColors >= maxColors) {
fNumColors = maxColors;
}
// Read the color table from the stream
colorBytes = fNumColors * fBytesPerColor;
SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes));
if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) {
SkDebugf("Error: unable to read color table.\n");
return false;
}
// Choose the proper packing function
SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t);
switch (alphaType) {
case kOpaque_SkAlphaType:
case kUnpremul_SkAlphaType:
packARGB = &SkPackARGB32NoCheck;
break;
case kPremul_SkAlphaType:
packARGB = &SkPreMultiplyARGB;
break;
default:
// This should not be reached because conversion possible
// should fail if the alpha type is not one of the above
// values.
SkASSERT(false);
packARGB = NULL;
break;
}
// Fill in the color table
uint32_t i = 0;
for (; i < fNumColors; i++) {
uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor);
uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1);
uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2);
uint8_t alpha = kOpaque_SkAlphaType == alphaType ? 0xFF :
(fMasks->getAlphaMask() >> 24) &
get_byte(cBuffer.get(), i*fBytesPerColor + 3);
colorTable[i] = packARGB(alpha, red, green, blue);
}
// To avoid segmentation faults on bad pixel data, fill the end of the
// color table with black. This is the same the behavior as the
// chromium decoder.
for (; i < maxColors; i++) {
colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
}
}
// Check that we have not read past the pixel array offset
if(fOffset < colorBytes) {
// This may occur on OS 2.1 and other old versions where the color
// table defaults to max size, and the bmp tries to use a smaller color
// table. This is invalid, and our decision is to indicate an error,
// rather than try to guess the intended size of the color table.
SkDebugf("Error: pixel data offset less than color table size.\n");
return false;
}
// After reading the color table, skip to the start of the pixel array
if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) {
SkDebugf("Error: unable to skip to image data.\n");
return false;
}
// Set the color table and return true on success
if (maxColors > 0) {
fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors)));
}
return true;
}
/*
*
* Performs the bitmap decoding for bit masks input format
*
*/
SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes) {
// Set constant values
const int width = dstInfo.width();
const int height = dstInfo.height();
const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
// Allocate a buffer large enough to hold the full image
SkAutoTDeleteArray<uint8_t>
srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes));
uint8_t* srcRow = srcBuffer.get();
// Create the swizzler
SkAutoTDelete<SkMaskSwizzler> maskSwizzler(
SkMaskSwizzler::CreateMaskSwizzler(dstInfo, dst, dstRowBytes,
fMasks, fBitsPerPixel));
// Iterate over rows of the image
bool transparent = true;
for (int y = 0; y < height; y++) {
// Read a row of the input
if (stream()->read(srcRow, rowBytes) != rowBytes) {
SkDebugf("Warning: incomplete input stream.\n");
return kIncompleteInput;
}
// Decode the row in destination format
int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y;
SkSwizzler::ResultAlpha r = maskSwizzler->next(srcRow, row);
transparent &= SkSwizzler::IsTransparent(r);
// Move to the next row
srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes);
}
// Some fully transparent bmp images are intended to be opaque. Here, we
// correct for this possibility.
if (transparent) {
const SkImageInfo& opaqueInfo =
dstInfo.makeAlphaType(kOpaque_SkAlphaType);
SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler(
SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, dst, dstRowBytes,
fMasks, fBitsPerPixel));
srcRow = srcBuffer.get();
for (int y = 0; y < height; y++) {
// Decode the row in opaque format
int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y;
opaqueSwizzler->next(srcRow, row);
// Move to the next row
srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes);
}
}
// Finished decoding the entire image
return kSuccess;
}
/*
*
* Set an RLE pixel using the color table
*
*/
void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes,
const SkImageInfo& dstInfo, uint32_t x, uint32_t y,
uint8_t index) {
// Set the row
int height = dstInfo.height();
int row;
if (kBottomUp_RowOrder == fRowOrder) {
row = height - y - 1;
} else {
row = y;
}
// Set the pixel based on destination color type
switch (dstInfo.colorType()) {
case kN32_SkColorType: {
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst,
row * (int) dstRowBytes);
dstRow[x] = fColorTable->operator[](index);
break;
}
case kRGB_565_SkColorType: {
uint16_t* dstRow = SkTAddOffset<uint16_t>(dst,
row * (int) dstRowBytes);
dstRow[x] = SkPixel32ToPixel16(fColorTable->operator[](index));
break;
}
default:
// This case should not be reached. We should catch an invalid
// color type when we check that the conversion is possible.
SkASSERT(false);
break;
}
}
/*
*
* Set an RLE pixel from R, G, B values
*
*/
void SkBmpCodec::setRLE24Pixel(SkPMColor* dst, size_t dstRowBytes,
const SkImageInfo& dstInfo, uint32_t x,
uint32_t y, uint8_t red, uint8_t green,
uint8_t blue) {
// Set the row
int height = dstInfo.height();
int row;
if (kBottomUp_RowOrder == fRowOrder) {
row = height - y - 1;
} else {
row = y;
}
// Set the pixel based on destination color type
switch (dstInfo.colorType()) {
case kN32_SkColorType: {
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst,
row * (int) dstRowBytes);
dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue);
break;
}
case kRGB_565_SkColorType: {
uint16_t* dstRow = SkTAddOffset<uint16_t>(dst,
row * (int) dstRowBytes);
dstRow[x] = SkPack888ToRGB16(red, green, blue);
break;
}
default:
// This case should not be reached. We should catch an invalid
// color type when we check that the conversion is possible.
SkASSERT(false);
break;
}
}
/*
*
* Performs the bitmap decoding for RLE input format
* RLE decoding is performed all at once, rather than a one row at a time
*
*/
SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes) {
// Set RLE flags
static const uint8_t RLE_ESCAPE = 0;
static const uint8_t RLE_EOL = 0;
static const uint8_t RLE_EOF = 1;
static const uint8_t RLE_DELTA = 2;
// Set constant values
const int width = dstInfo.width();
const int height = dstInfo.height();
// Input buffer parameters
uint32_t currByte = 0;
SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes));
size_t totalBytes = stream()->read(buffer.get(), fRLEBytes);
if (totalBytes < fRLEBytes) {
SkDebugf("Warning: incomplete RLE file.\n");
} else if (totalBytes <= 0) {
SkDebugf("Error: could not read RLE image data.\n");
return kInvalidInput;
}
// Destination parameters
int x = 0;
int y = 0;
// If the code skips pixels, remaining pixels are transparent or black
// TODO: Skip this if memory was already zeroed.
memset(dst, 0, dstRowBytes * height);
SkPMColor* dstPtr = (SkPMColor*) dst;
while (true) {
// Every entry takes at least two bytes
if ((int) totalBytes - currByte < 2) {
SkDebugf("Warning: incomplete RLE input.\n");
return kIncompleteInput;
}
// Read the next two bytes. These bytes have different meanings
// depending on their values. In the first interpretation, the first
// byte is an escape flag and the second byte indicates what special
// task to perform.
const uint8_t flag = buffer.get()[currByte++];
const uint8_t task = buffer.get()[currByte++];
// If we have reached a row that is beyond the image size, and the RLE
// code does not indicate end of file, abort and signal a warning.
if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) {
SkDebugf("Warning: invalid RLE input.\n");
return kIncompleteInput;
}
// Perform decoding
if (RLE_ESCAPE == flag) {
switch (task) {
case RLE_EOL:
x = 0;
y++;
break;
case RLE_EOF:
return kSuccess;
case RLE_DELTA: {
// Two bytes are needed to specify delta
if ((int) totalBytes - currByte < 2) {
SkDebugf("Warning: incomplete RLE input\n");
return kIncompleteInput;
}
// Modify x and y
const uint8_t dx = buffer.get()[currByte++];
const uint8_t dy = buffer.get()[currByte++];
x += dx;
y += dy;
if (x > width || y > height) {
SkDebugf("Warning: invalid RLE input.\n");
return kIncompleteInput;
}
break;
}
default: {
// If task does not match any of the above signals, it
// indicates that we have a sequence of non-RLE pixels.
// Furthermore, the value of task is equal to the number
// of pixels to interpret.
uint8_t numPixels = task;
const size_t rowBytes = compute_row_bytes(numPixels,
fBitsPerPixel);
// Abort if setting numPixels moves us off the edge of the
// image. Also abort if there are not enough bytes
// remaining in the stream to set numPixels.
if (x + numPixels > width ||
(int) totalBytes - currByte < SkAlign2(rowBytes)) {
SkDebugf("Warning: invalid RLE input.\n");
return kIncompleteInput;
}
// Set numPixels number of pixels
while (numPixels > 0) {
switch(fBitsPerPixel) {
case 4: {
SkASSERT(currByte < totalBytes);
uint8_t val = buffer.get()[currByte++];
setRLEPixel(dstPtr, dstRowBytes, dstInfo, x++,
y, val >> 4);
numPixels--;
if (numPixels != 0) {
setRLEPixel(dstPtr, dstRowBytes, dstInfo,
x++, y, val & 0xF);
numPixels--;
}
break;
}
case 8:
SkASSERT(currByte < totalBytes);
setRLEPixel(dstPtr, dstRowBytes, dstInfo, x++,
y, buffer.get()[currByte++]);
numPixels--;
break;
case 24: {
SkASSERT(currByte + 2 < totalBytes);
uint8_t blue = buffer.get()[currByte++];
uint8_t green = buffer.get()[currByte++];
uint8_t red = buffer.get()[currByte++];
setRLE24Pixel(dstPtr, dstRowBytes, dstInfo,
x++, y, red, green, blue);
numPixels--;
}
default:
SkASSERT(false);
return kInvalidInput;
}
}
// Skip a byte if necessary to maintain alignment
if (!SkIsAlign2(rowBytes)) {
currByte++;
}
break;
}
}
} else {
// If the first byte read is not a flag, it indicates the number of
// pixels to set in RLE mode.
const uint8_t numPixels = flag;
const int endX = SkTMin<int>(x + numPixels, width);
if (24 == fBitsPerPixel) {
// In RLE24, the second byte read is part of the pixel color.
// There are two more required bytes to finish encoding the
// color.
if ((int) totalBytes - currByte < 2) {
SkDebugf("Warning: incomplete RLE input\n");
return kIncompleteInput;
}
// Fill the pixels up to endX with the specified color
uint8_t blue = task;
uint8_t green = buffer.get()[currByte++];
uint8_t red = buffer.get()[currByte++];
while (x < endX) {
setRLE24Pixel(dstPtr, dstRowBytes, dstInfo, x++, y, red,
green, blue);
}
} else {
// In RLE8 or RLE4, the second byte read gives the index in the
// color table to look up the pixel color.
// RLE8 has one color index that gets repeated
// RLE4 has two color indexes in the upper and lower 4 bits of
// the bytes, which are alternated
uint8_t indices[2] = { task, task };
if (4 == fBitsPerPixel) {
indices[0] >>= 4;
indices[1] &= 0xf;
}
// Set the indicated number of pixels
for (int which = 0; x < endX; x++) {
setRLEPixel(dstPtr, dstRowBytes, dstInfo, x, y,
indices[which]);
which = !which;
}
}
}
}
}
/*
*
* Performs the bitmap decoding for standard input format
*
*/
SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes) {
// Set constant values
const int width = dstInfo.width();
const int height = dstInfo.height();
const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
// Get swizzler configuration
SkSwizzler::SrcConfig config;
switch (fBitsPerPixel) {
case 1:
config = SkSwizzler::kIndex1;
break;
case 2:
config = SkSwizzler::kIndex2;
break;
case 4:
config = SkSwizzler::kIndex4;
break;
case 8:
config = SkSwizzler::kIndex;
break;
case 24:
config = SkSwizzler::kBGR;
break;
case 32:
if (kOpaque_SkAlphaType == dstInfo.alphaType()) {
config = SkSwizzler::kBGRX;
} else {
config = SkSwizzler::kBGRA;
}
break;
default:
SkASSERT(false);
return kInvalidInput;
}
// Create swizzler
SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config,
fColorTable->readColors(), dstInfo, dst, dstRowBytes,
SkImageGenerator::kNo_ZeroInitialized));
// Allocate space for a row buffer and a source for the swizzler
SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
// Iterate over rows of the image
// FIXME: bool transparent = true;
for (int y = 0; y < height; y++) {
// Read a row of the input
if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
SkDebugf("Warning: incomplete input stream.\n");
return kIncompleteInput;
}
// Decode the row in destination format
uint32_t row;
if (kTopDown_RowOrder == fRowOrder) {
row = y;
} else {
row = height - 1 - y;
}
swizzler->next(srcBuffer.get(), row);
// FIXME: SkSwizzler::ResultAlpha r =
// swizzler->next(srcBuffer.get(), row);
// FIXME: transparent &= SkSwizzler::IsTransparent(r);
}
// FIXME: This code exists to match the behavior in the chromium decoder
// and to follow the bmp specification as it relates to alpha masks. It is
// commented out because we have yet to discover a test image that provides
// an alpha mask and uses this decode mode.
// Now we adjust the output image with some additional behavior that
// SkSwizzler does not support. Firstly, all bmp images that contain
// alpha are masked by the alpha mask. Secondly, many fully transparent
// bmp images are intended to be opaque. Here, we make those corrections.
// Modifying alpha is safe because colors are stored unpremultiplied.
/*
SkPMColor* dstRow = (SkPMColor*) dst;
if (SkSwizzler::kBGRA == config) {
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (transparent) {
dstRow[x] |= 0xFF000000;
} else {
dstRow[x] &= alphaMask;
}
dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
}
}
}
*/
// Finished decoding the entire image
return kSuccess;
}
|