1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBmpRLECodec.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkScaledCodec.h"
#include "SkScanlineDecoder.h"
#include "SkStream.h"
/*
* Creates an instance of the decoder
* Called only by NewFromStream
*/
SkBmpRLECodec::SkBmpRLECodec(const SkImageInfo& info, SkStream* stream,
uint16_t bitsPerPixel, uint32_t numColors,
uint32_t bytesPerColor, uint32_t offset,
SkScanlineDecoder::SkScanlineOrder rowOrder,
size_t RLEBytes)
: INHERITED(info, stream, bitsPerPixel, rowOrder)
, fColorTable(nullptr)
, fNumColors(this->computeNumColors(numColors))
, fBytesPerColor(bytesPerColor)
, fOffset(offset)
, fStreamBuffer(new uint8_t[RLEBytes])
, fRLEBytes(RLEBytes)
, fCurrRLEByte(0)
, fSampleX(1)
{}
/*
* Initiates the bitmap decode
*/
SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& opts,
SkPMColor* inputColorPtr,
int* inputColorCount) {
if (!this->rewindIfNeeded()) {
return kCouldNotRewind;
}
if (opts.fSubset) {
// Subsets are not supported.
return kUnimplemented;
}
if (dstInfo.dimensions() != this->getInfo().dimensions()) {
SkCodecPrintf("Error: scaling not supported.\n");
return kInvalidScale;
}
if (!conversion_possible(dstInfo, this->getInfo())) {
SkCodecPrintf("Error: cannot convert input type to output type.\n");
return kInvalidConversion;
}
Result result = this->prepareToDecode(dstInfo, opts, inputColorPtr, inputColorCount);
if (kSuccess != result) {
return result;
}
// Perform the decode
return this->decodeRows(dstInfo, dst, dstRowBytes, opts);
}
/*
* Process the color table for the bmp input
*/
bool SkBmpRLECodec::createColorTable(int* numColors) {
// Allocate memory for color table
uint32_t colorBytes = 0;
SkPMColor colorTable[256];
if (this->bitsPerPixel() <= 8) {
// Inform the caller of the number of colors
uint32_t maxColors = 1 << this->bitsPerPixel();
if (nullptr != numColors) {
// We set the number of colors to maxColors in order to ensure
// safe memory accesses. Otherwise, an invalid pixel could
// access memory outside of our color table array.
*numColors = maxColors;
}
// Read the color table from the stream
colorBytes = fNumColors * fBytesPerColor;
SkAutoTDeleteArray<uint8_t> cBuffer(new uint8_t[colorBytes]);
if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) {
SkCodecPrintf("Error: unable to read color table.\n");
return false;
}
// Fill in the color table
uint32_t i = 0;
for (; i < fNumColors; i++) {
uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor);
uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1);
uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2);
colorTable[i] = SkPackARGB32NoCheck(0xFF, red, green, blue);
}
// To avoid segmentation faults on bad pixel data, fill the end of the
// color table with black. This is the same the behavior as the
// chromium decoder.
for (; i < maxColors; i++) {
colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
}
// Set the color table
fColorTable.reset(new SkColorTable(colorTable, maxColors));
}
// Check that we have not read past the pixel array offset
if(fOffset < colorBytes) {
// This may occur on OS 2.1 and other old versions where the color
// table defaults to max size, and the bmp tries to use a smaller
// color table. This is invalid, and our decision is to indicate
// an error, rather than try to guess the intended size of the
// color table.
SkCodecPrintf("Error: pixel data offset less than color table size.\n");
return false;
}
// After reading the color table, skip to the start of the pixel array
if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) {
SkCodecPrintf("Error: unable to skip to image data.\n");
return false;
}
// Return true on success
return true;
}
bool SkBmpRLECodec::initializeStreamBuffer() {
// Setup a buffer to contain the full input stream
// TODO (msarett): I'm not sure it is smart or optimal to trust fRLEBytes (read from header)
// as the size of our buffer. First of all, the decode fails if fRLEBytes is
// corrupt (negative, zero, or small) when we might be able to decode
// successfully with a fixed size buffer. Additionally, we would save memory
// using a fixed size buffer if the RLE encoding is large. On the other hand,
// we may also waste memory with a fixed size buffer. And determining a
// minimum size for our buffer would depend on the image width (so it's not
// really "fixed" size), and we may end up allocating a buffer that is
// generally larger than the average encoded size anyway.
size_t totalBytes = this->stream()->read(fStreamBuffer.get(), fRLEBytes);
if (totalBytes < fRLEBytes) {
fRLEBytes = totalBytes;
SkCodecPrintf("Warning: incomplete RLE file.\n");
}
if (fRLEBytes == 0) {
SkCodecPrintf("Error: could not read RLE image data.\n");
return false;
}
fCurrRLEByte = 0;
return true;
}
/*
* Before signalling kIncompleteInput, we should attempt to load the
* stream buffer with additional data.
*
* @return the number of bytes remaining in the stream buffer after
* attempting to read more bytes from the stream
*/
size_t SkBmpRLECodec::checkForMoreData() {
const size_t remainingBytes = fRLEBytes - fCurrRLEByte;
uint8_t* buffer = fStreamBuffer.get();
// We will be reusing the same buffer, starting over from the beginning.
// Move any remaining bytes to the start of the buffer.
// We use memmove() instead of memcpy() because there is risk that the dst
// and src memory will overlap in corrupt images.
memmove(buffer, SkTAddOffset<uint8_t>(buffer, fCurrRLEByte), remainingBytes);
// Adjust the buffer ptr to the start of the unfilled data.
buffer += remainingBytes;
// Try to read additional bytes from the stream. There are fCurrRLEByte
// bytes of additional space remaining in the buffer, assuming that we
// have already copied remainingBytes to the start of the buffer.
size_t additionalBytes = this->stream()->read(buffer, fCurrRLEByte);
// Update counters and return the number of bytes we currently have
// available. We are at the start of the buffer again.
fCurrRLEByte = 0;
// If we were unable to fill the buffer, fRLEBytes is no longer equal to
// the size of the buffer. There will be unused space at the end. This
// should be fine, given that there are no more bytes in the stream.
fRLEBytes = remainingBytes + additionalBytes;
return fRLEBytes;
}
/*
* Set an RLE pixel using the color table
*/
void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes,
const SkImageInfo& dstInfo, uint32_t x, uint32_t y,
uint8_t index) {
if (is_coord_necessary(x, fSampleX, dstInfo.width())) {
// Set the row
uint32_t row = this->getDstRow(y, dstInfo.height());
// Set the pixel based on destination color type
const int dstX = get_dst_coord(x, fSampleX);
switch (dstInfo.colorType()) {
case kN32_SkColorType: {
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
dstRow[dstX] = fColorTable->operator[](index);
break;
}
case kRGB_565_SkColorType: {
uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes);
dstRow[dstX] = SkPixel32ToPixel16(fColorTable->operator[](index));
break;
}
default:
// This case should not be reached. We should catch an invalid
// color type when we check that the conversion is possible.
SkASSERT(false);
break;
}
}
}
/*
* Set an RLE pixel from R, G, B values
*/
void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes,
const SkImageInfo& dstInfo, uint32_t x,
uint32_t y, uint8_t red, uint8_t green,
uint8_t blue) {
if (is_coord_necessary(x, fSampleX, dstInfo.width())) {
// Set the row
uint32_t row = this->getDstRow(y, dstInfo.height());
// Set the pixel based on destination color type
const int dstX = get_dst_coord(x, fSampleX);
switch (dstInfo.colorType()) {
case kN32_SkColorType: {
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
dstRow[dstX] = SkPackARGB32NoCheck(0xFF, red, green, blue);
break;
}
case kRGB_565_SkColorType: {
uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes);
dstRow[dstX] = SkPack888ToRGB16(red, green, blue);
break;
}
default:
// This case should not be reached. We should catch an invalid
// color type when we check that the conversion is possible.
SkASSERT(false);
break;
}
}
}
SkCodec::Result SkBmpRLECodec::prepareToDecode(const SkImageInfo& dstInfo,
const SkCodec::Options& options, SkPMColor inputColorPtr[], int* inputColorCount) {
// Create the color table if necessary and prepare the stream for decode
// Note that if it is non-NULL, inputColorCount will be modified
if (!this->createColorTable(inputColorCount)) {
SkCodecPrintf("Error: could not create color table.\n");
return SkCodec::kInvalidInput;
}
// Copy the color table to the client if necessary
copy_color_table(dstInfo, this->fColorTable, inputColorPtr, inputColorCount);
// Initialize a buffer for encoded RLE data
if (!this->initializeStreamBuffer()) {
SkCodecPrintf("Error: cannot initialize stream buffer.\n");
return SkCodec::kInvalidConversion;
}
SkScaledCodec::ComputeSampleSize(dstInfo, this->getInfo(), &fSampleX, NULL);
return SkCodec::kSuccess;
}
/*
* Performs the bitmap decoding for RLE input format
* RLE decoding is performed all at once, rather than a one row at a time
*/
SkCodec::Result SkBmpRLECodec::decodeRows(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& opts) {
// Set RLE flags
static const uint8_t RLE_ESCAPE = 0;
static const uint8_t RLE_EOL = 0;
static const uint8_t RLE_EOF = 1;
static const uint8_t RLE_DELTA = 2;
// Set constant values
const int width = this->getInfo().width();
const int height = dstInfo.height();
// Destination parameters
int x = 0;
int y = 0;
// Set the background as transparent. Then, if the RLE code skips pixels,
// the skipped pixels will be transparent.
// Because of the need for transparent pixels, kN32 is the only color
// type that makes sense for the destination format.
SkASSERT(kN32_SkColorType == dstInfo.colorType());
SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT,
NULL, opts.fZeroInitialized);
while (true) {
// If we have reached a row that is beyond the requested height, we have
// succeeded.
if (y >= height) {
// It would be better to check for the EOF marker before returning
// success, but we may be performing a scanline decode, which
// may require us to stop before decoding the full height.
return kSuccess;
}
// Every entry takes at least two bytes
if ((int) fRLEBytes - fCurrRLEByte < 2) {
SkCodecPrintf("Warning: might be incomplete RLE input.\n");
if (this->checkForMoreData() < 2) {
return kIncompleteInput;
}
}
// Read the next two bytes. These bytes have different meanings
// depending on their values. In the first interpretation, the first
// byte is an escape flag and the second byte indicates what special
// task to perform.
const uint8_t flag = fStreamBuffer.get()[fCurrRLEByte++];
const uint8_t task = fStreamBuffer.get()[fCurrRLEByte++];
// Perform decoding
if (RLE_ESCAPE == flag) {
switch (task) {
case RLE_EOL:
x = 0;
y++;
break;
case RLE_EOF:
return kSuccess;
case RLE_DELTA: {
// Two bytes are needed to specify delta
if ((int) fRLEBytes - fCurrRLEByte < 2) {
SkCodecPrintf("Warning: might be incomplete RLE input.\n");
if (this->checkForMoreData() < 2) {
return kIncompleteInput;
}
}
// Modify x and y
const uint8_t dx = fStreamBuffer.get()[fCurrRLEByte++];
const uint8_t dy = fStreamBuffer.get()[fCurrRLEByte++];
x += dx;
y += dy;
if (x > width || y > height) {
SkCodecPrintf("Warning: invalid RLE input.\n");
return kInvalidInput;
}
break;
}
default: {
// If task does not match any of the above signals, it
// indicates that we have a sequence of non-RLE pixels.
// Furthermore, the value of task is equal to the number
// of pixels to interpret.
uint8_t numPixels = task;
const size_t rowBytes = compute_row_bytes(numPixels,
this->bitsPerPixel());
// Abort if setting numPixels moves us off the edge of the
// image.
if (x + numPixels > width) {
SkCodecPrintf("Warning: invalid RLE input.\n");
return kInvalidInput;
}
// Also abort if there are not enough bytes
// remaining in the stream to set numPixels.
if ((int) fRLEBytes - fCurrRLEByte < SkAlign2(rowBytes)) {
SkCodecPrintf("Warning: might be incomplete RLE input.\n");
if (this->checkForMoreData() < SkAlign2(rowBytes)) {
return kIncompleteInput;
}
}
// Set numPixels number of pixels
while (numPixels > 0) {
switch(this->bitsPerPixel()) {
case 4: {
SkASSERT(fCurrRLEByte < fRLEBytes);
uint8_t val = fStreamBuffer.get()[fCurrRLEByte++];
setPixel(dst, dstRowBytes, dstInfo, x++,
y, val >> 4);
numPixels--;
if (numPixels != 0) {
setPixel(dst, dstRowBytes, dstInfo,
x++, y, val & 0xF);
numPixels--;
}
break;
}
case 8:
SkASSERT(fCurrRLEByte < fRLEBytes);
setPixel(dst, dstRowBytes, dstInfo, x++,
y, fStreamBuffer.get()[fCurrRLEByte++]);
numPixels--;
break;
case 24: {
SkASSERT(fCurrRLEByte + 2 < fRLEBytes);
uint8_t blue = fStreamBuffer.get()[fCurrRLEByte++];
uint8_t green = fStreamBuffer.get()[fCurrRLEByte++];
uint8_t red = fStreamBuffer.get()[fCurrRLEByte++];
setRGBPixel(dst, dstRowBytes, dstInfo,
x++, y, red, green, blue);
numPixels--;
}
default:
SkASSERT(false);
return kInvalidInput;
}
}
// Skip a byte if necessary to maintain alignment
if (!SkIsAlign2(rowBytes)) {
fCurrRLEByte++;
}
break;
}
}
} else {
// If the first byte read is not a flag, it indicates the number of
// pixels to set in RLE mode.
const uint8_t numPixels = flag;
const int endX = SkTMin<int>(x + numPixels, width);
if (24 == this->bitsPerPixel()) {
// In RLE24, the second byte read is part of the pixel color.
// There are two more required bytes to finish encoding the
// color.
if ((int) fRLEBytes - fCurrRLEByte < 2) {
SkCodecPrintf("Warning: might be incomplete RLE input.\n");
if (this->checkForMoreData() < 2) {
return kIncompleteInput;
}
}
// Fill the pixels up to endX with the specified color
uint8_t blue = task;
uint8_t green = fStreamBuffer.get()[fCurrRLEByte++];
uint8_t red = fStreamBuffer.get()[fCurrRLEByte++];
while (x < endX) {
setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue);
}
} else {
// In RLE8 or RLE4, the second byte read gives the index in the
// color table to look up the pixel color.
// RLE8 has one color index that gets repeated
// RLE4 has two color indexes in the upper and lower 4 bits of
// the bytes, which are alternated
uint8_t indices[2] = { task, task };
if (4 == this->bitsPerPixel()) {
indices[0] >>= 4;
indices[1] &= 0xf;
}
// Set the indicated number of pixels
for (int which = 0; x < endX; x++) {
setPixel(dst, dstRowBytes, dstInfo, x, y, indices[which]);
which = !which;
}
}
}
}
}
|