aboutsummaryrefslogtreecommitdiffhomepage
path: root/samplecode/SampleSVGPong.cpp
blob: 590ec1824bd132f05465636a5a1ad298349968fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SampleCode.h"
#include "SkAnimTimer.h"
#include "SkColor.h"
#include "SkRandom.h"
#include "SkRRect.h"
#include "SkSVGDOM.h"
#include "SkSVGG.h"
#include "SkSVGPath.h"
#include "SkSVGRect.h"
#include "SkSVGSVG.h"

namespace {

static const SkRect kBounds     = SkRect::MakeLTRB(0.1f, 0.1f, 0.9f, 0.9f);
static const SkSize kPaddleSize = SkSize::Make(0.03f, 0.1f);
static const SkScalar kBallSize = 0.04f;
static const SkScalar kShadowOpacity       = 0.40f;
static const SkScalar kShadowParallax      = 0.04f;
static const SkScalar kBackgroundStroke    = 0.01f;
static const uint32_t kBackgroundDashCount = 20;

static const SkScalar kBallSpeedMax  = 0.0020f;
static const SkScalar kBallSpeedMin  = 0.0005f;
static const SkScalar kBallSpeedFuzz = 0.0002f;

static const SkScalar kTimeScaleMin = 0.0f;
static const SkScalar kTimeScaleMax = 5.0f;

// Box the value within [min, max), by applying infinite reflection on the interval endpoints.
SkScalar box_reflect(SkScalar v, SkScalar min, SkScalar max) {
    const SkScalar intervalLen = max - min;
    SkASSERT(intervalLen > 0);

    // f(v) is periodic in 2 * intervalLen: one normal progression + one reflection
    const SkScalar P = intervalLen * 2;
    // relative to P origin
    const SkScalar vP = v - min;
    // map to [0, P)
    const SkScalar vMod = (vP < 0) ? P - SkScalarMod(-vP, P) : SkScalarMod(vP, P);
    // reflect if needed, to map to [0, intervalLen)
    const SkScalar vInterval = vMod < intervalLen ? vMod : P - vMod;
    // finally, reposition relative to min
    return vInterval + min;
}

// Compute <t, y> for the trajectory intersection with the next vertical edge.
std::tuple<SkScalar, SkScalar> find_yintercept(const SkPoint& pos, const SkVector& spd,
                                               const SkRect& box) {
    const SkScalar edge = spd.fX > 0 ? box.fRight : box.fLeft;
    const SkScalar    t = (edge - pos.fX) / spd.fX;
    SkASSERT(t >= 0);
    const SkScalar   dY = t * spd.fY;

    return std::make_tuple(t, box_reflect(pos.fY + dY, box.fTop, box.fBottom));
}

sk_sp<SkSVGRect> make_svg_rrect(const SkRRect& rrect) {
    sk_sp<SkSVGRect> node = SkSVGRect::Make();
    node->setX(SkSVGLength(rrect.rect().x()));
    node->setY(SkSVGLength(rrect.rect().y()));
    node->setWidth(SkSVGLength(rrect.width()));
    node->setHeight(SkSVGLength(rrect.height()));
    node->setRx(SkSVGLength(rrect.getSimpleRadii().x()));
    node->setRy(SkSVGLength(rrect.getSimpleRadii().y()));

    return node;
}

} // anonymous ns

class SVGPongView final : public SampleView {
public:
    SVGPongView() {}

protected:
    void onOnceBeforeDraw() override {
        const SkRect fieldBounds = kBounds.makeOutset(kBallSize / 2, kBallSize / 2);
        const SkRRect ball = SkRRect::MakeOval(SkRect::MakeWH(kBallSize, kBallSize));
        const SkRRect paddle = SkRRect::MakeRectXY(SkRect::MakeWH(kPaddleSize.width(),
                                                                  kPaddleSize.height()),
                                                   kPaddleSize.width() / 2,
                                                   kPaddleSize.width() / 2);
        fBall.initialize(ball,
                         SK_ColorGREEN,
                         SkPoint::Make(kBounds.centerX(), kBounds.centerY()),
                         SkVector::Make(fRand.nextRangeScalar(kBallSpeedMin, kBallSpeedMax),
                                        fRand.nextRangeScalar(kBallSpeedMin, kBallSpeedMax)));
        fPaddle0.initialize(paddle,
                            SK_ColorBLUE,
                            SkPoint::Make(fieldBounds.left() - kPaddleSize.width() / 2,
                                          fieldBounds.centerY()),
                            SkVector::Make(0, 0));
        fPaddle1.initialize(paddle,
                            SK_ColorRED,
                            SkPoint::Make(fieldBounds.right() + kPaddleSize.width() / 2,
                                          fieldBounds.centerY()),
                            SkVector::Make(0, 0));

        // Background decoration.
        SkPath bgPath;
        bgPath.moveTo(kBounds.left() , fieldBounds.top());
        bgPath.lineTo(kBounds.right(), fieldBounds.top());
        bgPath.moveTo(kBounds.left() , fieldBounds.bottom());
        bgPath.lineTo(kBounds.right(), fieldBounds.bottom());
        // TODO: stroke-dash support would come in handy right about now.
        for (uint32_t i = 0; i < kBackgroundDashCount; ++i) {
            bgPath.moveTo(kBounds.centerX(),
                          kBounds.top() + (i + 0.25f) * kBounds.height() / kBackgroundDashCount);
            bgPath.lineTo(kBounds.centerX(),
                          kBounds.top() + (i + 0.75f) * kBounds.height() / kBackgroundDashCount);
        }

        sk_sp<SkSVGPath> bg = SkSVGPath::Make();
        bg->setPath(bgPath);
        bg->setFill(SkSVGPaint(SkSVGPaint::Type::kNone));
        bg->setStroke(SkSVGPaint(SkSVGColorType(SK_ColorBLACK)));
        bg->setStrokeWidth(SkSVGLength(kBackgroundStroke));

        // Build the SVG DOM tree.
        sk_sp<SkSVGSVG> root = SkSVGSVG::Make();
        root->appendChild(std::move(bg));
        root->appendChild(fPaddle0.shadowNode);
        root->appendChild(fPaddle1.shadowNode);
        root->appendChild(fBall.shadowNode);
        root->appendChild(fPaddle0.objectNode);
        root->appendChild(fPaddle1.objectNode);
        root->appendChild(fBall.objectNode);

        // Handle everything in a normalized 1x1 space.
        root->setViewBox(SkSVGViewBoxType(SkRect::MakeWH(1, 1)));

        fDom = sk_sp<SkSVGDOM>(new SkSVGDOM());
        fDom->setContainerSize(SkSize::Make(this->width(), this->height()));
        fDom->setRoot(std::move(root));

        // Off we go.
        this->updatePaddleStrategy();
    }

    bool onQuery(SkEvent* evt) override {
        if (SampleCode::TitleQ(*evt)) {
            SampleCode::TitleR(evt, "SVGPong");
            return true;
        }

        SkUnichar uni;
        if (SampleCode::CharQ(*evt, &uni)) {
            switch (uni) {
                case '[':
                    fTimeScale = SkTPin(fTimeScale - 0.1f, kTimeScaleMin, kTimeScaleMax);
                    return true;
                case ']':
                    fTimeScale = SkTPin(fTimeScale + 0.1f, kTimeScaleMin, kTimeScaleMax);
                    return true;
                default:
                    break;
            }
        }
        return this->INHERITED::onQuery(evt);
    }

    void onSizeChange() override {
        if (fDom) {
            fDom->setContainerSize(SkSize::Make(this->width(), this->height()));
        }

        this->INHERITED::onSizeChange();
    }

    void onDrawContent(SkCanvas* canvas) override {
        fDom->render(canvas);
    }

    bool onAnimate(const SkAnimTimer& timer) override {
        SkScalar dt = (timer.msec() - fLastTick) * fTimeScale;
        fLastTick = timer.msec();

        fPaddle0.posTick(dt);
        fPaddle1.posTick(dt);
        fBall.posTick(dt);

        this->enforceConstraints();

        fPaddle0.updateDom();
        fPaddle1.updateDom();
        fBall.updateDom();

        return true;
    }

private:
    struct Object {
        void initialize(const SkRRect& rrect, SkColor color,
                        const SkPoint& p, const SkVector& s) {
            objectNode = make_svg_rrect(rrect);
            objectNode->setFill(SkSVGPaint(SkSVGColorType(color)));

            shadowNode = make_svg_rrect(rrect);
            shadowNode->setFillOpacity(SkSVGNumberType(kShadowOpacity));

            pos = p;
            spd = s;
            size = SkSize::Make(rrect.width(), rrect.height());
        }

        void posTick(SkScalar dt) {
            pos += spd * dt;
        }

        void updateDom() {
            const SkPoint corner = pos - SkPoint::Make(size.width() / 2, size.height() / 2);
            objectNode->setX(SkSVGLength(corner.x()));
            objectNode->setY(SkSVGLength(corner.y()));

            // Simulate parallax shadow for a centered light source.
            SkPoint shadowOffset = pos - SkPoint::Make(kBounds.centerX(), kBounds.centerY());
            shadowOffset.scale(kShadowParallax);
            const SkPoint shadowCorner = corner + shadowOffset;

            shadowNode->setX(SkSVGLength(shadowCorner.x()));
            shadowNode->setY(SkSVGLength(shadowCorner.y()));
        }

        sk_sp<SkSVGRect> objectNode;
        sk_sp<SkSVGRect> shadowNode;
        SkPoint          pos;
        SkVector         spd;
        SkSize           size;
    };

    void enforceConstraints() {
        // Perfect vertical reflection.
        if (fBall.pos.fY < kBounds.fTop || fBall.pos.fY >= kBounds.fBottom) {
            fBall.spd.fY = -fBall.spd.fY;
            fBall.pos.fY = box_reflect(fBall.pos.fY, kBounds.fTop, kBounds.fBottom);
        }

        // Horizontal bounce - introduces a speed fuzz.
        if (fBall.pos.fX < kBounds.fLeft || fBall.pos.fX >= kBounds.fRight) {
            fBall.spd.fX = this->fuzzBallSpeed(-fBall.spd.fX);
            fBall.spd.fY = this->fuzzBallSpeed(fBall.spd.fY);
            fBall.pos.fX = box_reflect(fBall.pos.fX, kBounds.fLeft, kBounds.fRight);
            this->updatePaddleStrategy();
        }
    }

    SkScalar fuzzBallSpeed(SkScalar spd) {
        // The speed limits are absolute values.
        const SkScalar   sign = spd >= 0 ? 1.0f : -1.0f;
        const SkScalar fuzzed = fabs(spd) + fRand.nextRangeScalar(-kBallSpeedFuzz, kBallSpeedFuzz);

        return sign * SkTPin(fuzzed, kBallSpeedMin, kBallSpeedMax);
    }

    void updatePaddleStrategy() {
        Object* pitcher = fBall.spd.fX > 0 ? &fPaddle0 : &fPaddle1;
        Object* catcher = fBall.spd.fX > 0 ? &fPaddle1 : &fPaddle0;

        SkScalar t, yIntercept;
        std::tie(t, yIntercept) = find_yintercept(fBall.pos, fBall.spd, kBounds);

        // The pitcher aims for a neutral/centered position.
        pitcher->spd.fY = (kBounds.centerY() - pitcher->pos.fY) / t;

        // The catcher goes for the ball.  Duh.
        catcher->spd.fY = (yIntercept - catcher->pos.fY) / t;
    }

    sk_sp<SkSVGDOM> fDom;
    Object          fPaddle0, fPaddle1, fBall;
    SkRandom        fRand;

    SkMSec          fLastTick  = 0;
    SkScalar        fTimeScale = 1.0f;

    typedef SampleView INHERITED;
};

static SkView* SVGPongFactory() { return new SVGPongView; }
static SkViewRegister reg(SVGPongFactory);