aboutsummaryrefslogtreecommitdiffhomepage
path: root/modules/skottie/src/SkottieValue.cpp
blob: edfa891aa1fd74d8ca2c8223a15fd04f569dbece (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkottieValue.h"

#include "SkColor.h"
#include "SkNx.h"
#include "SkPoint.h"
#include "SkSize.h"

namespace  skottie {

template <>
size_t ValueTraits<ScalarValue>::Cardinality(const ScalarValue&) {
    return 1;
}

template <>
ScalarValue ValueTraits<ScalarValue>::Lerp(const ScalarValue& v0, const ScalarValue& v1, float t) {
    SkASSERT(t >= 0 && t <= 1);
    return v0 + (v1 - v0) * t;
}

template <>
template <>
SkScalar ValueTraits<ScalarValue>::As<SkScalar>(const ScalarValue& v) {
    return v;
}

template <>
size_t ValueTraits<VectorValue>::Cardinality(const VectorValue& vec) {
    return vec.size();
}

template <>
VectorValue ValueTraits<VectorValue>::Lerp(const VectorValue& v0, const VectorValue& v1, float t) {
    SkASSERT(v0.size() == v1.size());

    VectorValue v;
    v.reserve(v0.size());

    for (size_t i = 0; i < v0.size(); ++i) {
        v.push_back(ValueTraits<ScalarValue>::Lerp(v0[i], v1[i], t));
    }

    return v;
}

template <>
template <>
SkColor ValueTraits<VectorValue>::As<SkColor>(const VectorValue& v) {
    // best effort to turn this into a color
    const auto r = v.size() > 0 ? v[0] : 0,
               g = v.size() > 1 ? v[1] : 0,
               b = v.size() > 2 ? v[2] : 0,
               a = v.size() > 3 ? v[3] : 1;

    return SkColorSetARGB(SkTPin<SkScalar>(a, 0, 1) * 255,
                          SkTPin<SkScalar>(r, 0, 1) * 255,
                          SkTPin<SkScalar>(g, 0, 1) * 255,
                          SkTPin<SkScalar>(b, 0, 1) * 255);
}

template <>
template <>
SkPoint ValueTraits<VectorValue>::As<SkPoint>(const VectorValue& vec) {
    // best effort to turn this into a point
    const auto x = vec.size() > 0 ? vec[0] : 0,
               y = vec.size() > 1 ? vec[1] : 0;
    return SkPoint::Make(x, y);
}

template <>
template <>
SkSize ValueTraits<VectorValue>::As<SkSize>(const VectorValue& vec) {
    const auto pt = ValueTraits::As<SkPoint>(vec);
    return SkSize::Make(pt.x(), pt.y());
}

template <>
size_t ValueTraits<ShapeValue>::Cardinality(const ShapeValue& shape) {
    return shape.fVertices.size();
}

static SkPoint lerp_point(const SkPoint& v0, const SkPoint& v1, const Sk2f& t) {
    const auto v2f0 = Sk2f::Load(&v0),
               v2f1 = Sk2f::Load(&v1);

    SkPoint v;
    (v2f0 + (v2f1 - v2f0) * t).store(&v);

    return v;
}

template <>
ShapeValue ValueTraits<ShapeValue>::Lerp(const ShapeValue& v0, const ShapeValue& v1, float t) {
    SkASSERT(t >= 0 && t <= 1);
    SkASSERT(v0.fVertices.size() == v1.fVertices.size());
    SkASSERT(v0.fClosed == v1.fClosed);

    ShapeValue v;
    v.fClosed = v0.fClosed;
    v.fVolatile = true; // interpolated values are volatile

    const auto t2f = Sk2f(t);
    v.fVertices.reserve(v0.fVertices.size());

    for (size_t i = 0; i < v0.fVertices.size(); ++i) {
        v.fVertices.emplace_back(BezierVertex({
            lerp_point(v0.fVertices[i].fInPoint , v1.fVertices[i].fInPoint , t2f),
            lerp_point(v0.fVertices[i].fOutPoint, v1.fVertices[i].fOutPoint, t2f),
            lerp_point(v0.fVertices[i].fVertex  , v1.fVertices[i].fVertex  , t2f)
        }));
    }

    return v;
}

template <>
template <>
SkPath ValueTraits<ShapeValue>::As<SkPath>(const ShapeValue& shape) {
    SkPath path;

    if (!shape.fVertices.empty()) {
        path.moveTo(shape.fVertices.front().fVertex);
    }

    const auto& addCubic = [&](size_t from, size_t to) {
        const auto c0 = shape.fVertices[from].fVertex + shape.fVertices[from].fOutPoint,
                   c1 = shape.fVertices[to].fVertex   + shape.fVertices[to].fInPoint;

        if (c0 == shape.fVertices[from].fVertex &&
            c1 == shape.fVertices[to].fVertex) {
            // If the control points are coincident, we can power-reduce to a straight line.
            // TODO: we could also do that when the controls are on the same line as the
            //       vertices, but it's unclear how common that case is.
            path.lineTo(shape.fVertices[to].fVertex);
        } else {
            path.cubicTo(c0, c1, shape.fVertices[to].fVertex);
        }
    };

    for (size_t i = 1; i < shape.fVertices.size(); ++i) {
        addCubic(i - 1, i);
    }

    if (!shape.fVertices.empty() && shape.fClosed) {
        addCubic(shape.fVertices.size() - 1, 0);
        path.close();
    }

    path.setIsVolatile(shape.fVolatile);

    return path;
}

} // namespace skottie