aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/private/SkTemplates.h
blob: 418502b2c1df51b82cb66be2e7ccd58cbdf1a506 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef SkTemplates_DEFINED
#define SkTemplates_DEFINED

#include "SkMath.h"
#include "SkMalloc.h"
#include "SkTLogic.h"
#include "SkTypes.h"
#include <limits.h>
#include <memory>
#include <new>

/** \file SkTemplates.h

    This file contains light-weight template classes for type-safe and exception-safe
    resource management.
*/

/**
 *  Marks a local variable as known to be unused (to avoid warnings).
 *  Note that this does *not* prevent the local variable from being optimized away.
 */
template<typename T> inline void sk_ignore_unused_variable(const T&) { }

/**
 *  Returns a pointer to a D which comes immediately after S[count].
 */
template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
    return reinterpret_cast<D*>(ptr + count);
}

/**
 *  Returns a pointer to a D which comes byteOffset bytes after S.
 */
template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) {
    // The intermediate char* has the same cv-ness as D as this produces better error messages.
    // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
    return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
}

template <typename R, typename T, R (*P)(T*)> struct SkFunctionWrapper {
    R operator()(T* t) { return P(t); }
};

/** \class SkAutoTCallVProc

    Call a function when this goes out of scope. The template uses two
    parameters, the object, and a function that is to be called in the destructor.
    If release() is called, the object reference is set to null. If the object
    reference is null when the destructor is called, we do not call the
    function.
*/
template <typename T, void (*P)(T*)> class SkAutoTCallVProc
    : public std::unique_ptr<T, SkFunctionWrapper<void, T, P>> {
public:
    SkAutoTCallVProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<void, T, P>>(obj) {}

    operator T*() const { return this->get(); }
};

/** \class SkAutoTCallIProc

Call a function when this goes out of scope. The template uses two
parameters, the object, and a function that is to be called in the destructor.
If release() is called, the object reference is set to null. If the object
reference is null when the destructor is called, we do not call the
function.
*/
template <typename T, int (*P)(T*)> class SkAutoTCallIProc
    : public std::unique_ptr<T, SkFunctionWrapper<int, T, P>> {
public:
    SkAutoTCallIProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<int, T, P>>(obj) {}

    operator T*() const { return this->get(); }
};

/** Allocate an array of T elements, and free the array in the destructor
 */
template <typename T> class SkAutoTArray  {
public:
    SkAutoTArray() {}
    /** Allocate count number of T elements
     */
    explicit SkAutoTArray(int count) {
        SkASSERT(count >= 0);
        if (count) {
            fArray.reset(new T[count]);
        }
        SkDEBUGCODE(fCount = count;)
    }

    SkAutoTArray(SkAutoTArray&& other) : fArray(std::move(other.fArray)) {
        SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;)
    }
    SkAutoTArray& operator=(SkAutoTArray&& other) {
        if (this != &other) {
            fArray = std::move(other.fArray);
            SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;)
        }
        return *this;
    }

    /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
     */
    void reset(int count) { *this = SkAutoTArray(count);  }

    /** Return the array of T elements. Will be NULL if count == 0
     */
    T* get() const { return fArray.get(); }

    /** Return the nth element in the array
     */
    T&  operator[](int index) const {
        SkASSERT((unsigned)index < (unsigned)fCount);
        return fArray[index];
    }

private:
    std::unique_ptr<T[]> fArray;
    SkDEBUGCODE(int fCount = 0;)
};

/** Wraps SkAutoTArray, with room for kCountRequested elements preallocated.
 */
template <int kCountRequested, typename T> class SkAutoSTArray {
public:
    SkAutoSTArray(SkAutoSTArray&&) = delete;
    SkAutoSTArray(const SkAutoSTArray&) = delete;
    SkAutoSTArray& operator=(SkAutoSTArray&&) = delete;
    SkAutoSTArray& operator=(const SkAutoSTArray&) = delete;

    /** Initialize with no objects */
    SkAutoSTArray() {
        fArray = nullptr;
        fCount = 0;
    }

    /** Allocate count number of T elements
     */
    SkAutoSTArray(int count) {
        fArray = nullptr;
        fCount = 0;
        this->reset(count);
    }

    ~SkAutoSTArray() {
        this->reset(0);
    }

    /** Destroys previous objects in the array and default constructs count number of objects */
    void reset(int count) {
        T* start = fArray;
        T* iter = start + fCount;
        while (iter > start) {
            (--iter)->~T();
        }

        SkASSERT(count >= 0);
        if (fCount != count) {
            if (fCount > kCount) {
                // 'fArray' was allocated last time so free it now
                SkASSERT((T*) fStorage != fArray);
                sk_free(fArray);
            }

            if (count > kCount) {
                fArray = (T*) sk_malloc_throw(count, sizeof(T));
            } else if (count > 0) {
                fArray = (T*) fStorage;
            } else {
                fArray = nullptr;
            }

            fCount = count;
        }

        iter = fArray;
        T* stop = fArray + count;
        while (iter < stop) {
            new (iter++) T;
        }
    }

    /** Return the number of T elements in the array
     */
    int count() const { return fCount; }

    /** Return the array of T elements. Will be NULL if count == 0
     */
    T* get() const { return fArray; }

    T* begin() { return fArray; }

    const T* begin() const { return fArray; }

    T* end() { return fArray + fCount; }

    const T* end() const { return fArray + fCount; }

    /** Return the nth element in the array
     */
    T&  operator[](int index) const {
        SkASSERT(index < fCount);
        return fArray[index];
    }

private:
#if defined(SK_BUILD_FOR_GOOGLE3)
    // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
    // have multiple large stack allocations.
    static const int kMaxBytes = 4 * 1024;
    static const int kCount = kCountRequested * sizeof(T) > kMaxBytes
        ? kMaxBytes / sizeof(T)
        : kCountRequested;
#else
    static const int kCount = kCountRequested;
#endif

    int     fCount;
    T*      fArray;
    // since we come right after fArray, fStorage should be properly aligned
    char    fStorage[kCount * sizeof(T)];
};

/** Manages an array of T elements, freeing the array in the destructor.
 *  Does NOT call any constructors/destructors on T (T must be POD).
 */
template <typename T> class SkAutoTMalloc  {
public:
    /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
    explicit SkAutoTMalloc(T* ptr = nullptr) : fPtr(ptr) {}

    /** Allocates space for 'count' Ts. */
    explicit SkAutoTMalloc(size_t count)
        : fPtr(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr) {}

    SkAutoTMalloc(SkAutoTMalloc&&) = default;
    SkAutoTMalloc& operator=(SkAutoTMalloc&&) = default;

    /** Resize the memory area pointed to by the current ptr preserving contents. */
    void realloc(size_t count) {
        fPtr.reset(count ? (T*)sk_realloc_throw(fPtr.release(), count * sizeof(T)) : nullptr);
    }

    /** Resize the memory area pointed to by the current ptr without preserving contents. */
    T* reset(size_t count = 0) {
        fPtr.reset(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr);
        return this->get();
    }

    T* get() const { return fPtr.get(); }

    operator T*() { return fPtr.get(); }

    operator const T*() const { return fPtr.get(); }

    T& operator[](int index) { return fPtr.get()[index]; }

    const T& operator[](int index) const { return fPtr.get()[index]; }

    /**
     *  Transfer ownership of the ptr to the caller, setting the internal
     *  pointer to NULL. Note that this differs from get(), which also returns
     *  the pointer, but it does not transfer ownership.
     */
    T* release() { return fPtr.release(); }

private:
    std::unique_ptr<T, SkFunctionWrapper<void, void, sk_free>> fPtr;
};

template <size_t kCountRequested, typename T> class SkAutoSTMalloc {
public:
    SkAutoSTMalloc() : fPtr(fTStorage) {}

    SkAutoSTMalloc(size_t count) {
        if (count > kCount) {
            fPtr = (T*)sk_malloc_throw(count, sizeof(T));
        } else if (count) {
            fPtr = fTStorage;
        } else {
            fPtr = nullptr;
        }
    }

    SkAutoSTMalloc(SkAutoSTMalloc&&) = delete;
    SkAutoSTMalloc(const SkAutoSTMalloc&) = delete;
    SkAutoSTMalloc& operator=(SkAutoSTMalloc&&) = delete;
    SkAutoSTMalloc& operator=(const SkAutoSTMalloc&) = delete;

    ~SkAutoSTMalloc() {
        if (fPtr != fTStorage) {
            sk_free(fPtr);
        }
    }

    // doesn't preserve contents
    T* reset(size_t count) {
        if (fPtr != fTStorage) {
            sk_free(fPtr);
        }
        if (count > kCount) {
            fPtr = (T*)sk_malloc_throw(count, sizeof(T));
        } else if (count) {
            fPtr = fTStorage;
        } else {
            fPtr = nullptr;
        }
        return fPtr;
    }

    T* get() const { return fPtr; }

    operator T*() {
        return fPtr;
    }

    operator const T*() const {
        return fPtr;
    }

    T& operator[](int index) {
        return fPtr[index];
    }

    const T& operator[](int index) const {
        return fPtr[index];
    }

    // Reallocs the array, can be used to shrink the allocation.  Makes no attempt to be intelligent
    void realloc(size_t count) {
        if (count > kCount) {
            if (fPtr == fTStorage) {
                fPtr = (T*)sk_malloc_throw(count, sizeof(T));
                memcpy(fPtr, fTStorage, kCount * sizeof(T));
            } else {
                fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
            }
        } else if (count) {
            if (fPtr != fTStorage) {
                fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
            }
        } else {
            this->reset(0);
        }
    }

private:
    // Since we use uint32_t storage, we might be able to get more elements for free.
    static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
#if defined(SK_BUILD_FOR_GOOGLE3)
    // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
    // have multiple large stack allocations.
    static const size_t kMaxBytes = 4 * 1024;
    static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes
        ? kMaxBytes / sizeof(T)
        : kCountWithPadding;
#else
    static const size_t kCount = kCountWithPadding;
#endif

    T*          fPtr;
    union {
        uint32_t    fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
        T           fTStorage[1];   // do NOT want to invoke T::T()
    };
};

//////////////////////////////////////////////////////////////////////////////////////////////////

/**
 *  Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will
 *  safely destroy (and free if it was dynamically allocated) the object.
 */
template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) {
    if (storage == obj) {
        obj->~T();
    } else {
        delete obj;
    }
}

/**
 *  Allocates T, using storage if it is large enough, and allocating on the heap (via new) if
 *  storage is not large enough.
 *
 *      obj = SkInPlaceNewCheck<Type>(storage, size);
 *      ...
 *      SkInPlaceDeleteCheck(obj, storage);
 */
template<typename T, typename... Args>
T* SkInPlaceNewCheck(void* storage, size_t size, Args&&... args) {
    return (sizeof(T) <= size) ? new (storage) T(std::forward<Args>(args)...)
                               : new T(std::forward<Args>(args)...);
}
/**
 * Reserves memory that is aligned on double and pointer boundaries.
 * Hopefully this is sufficient for all practical purposes.
 */
template <size_t N> class SkAlignedSStorage {
public:
    SkAlignedSStorage() {}
    SkAlignedSStorage(SkAlignedSStorage&&) = delete;
    SkAlignedSStorage(const SkAlignedSStorage&) = delete;
    SkAlignedSStorage& operator=(SkAlignedSStorage&&) = delete;
    SkAlignedSStorage& operator=(const SkAlignedSStorage&) = delete;

    size_t size() const { return N; }
    void* get() { return fData; }
    const void* get() const { return fData; }

private:
    union {
        void*   fPtr;
        double  fDouble;
        char    fData[N];
    };
};

/**
 * Reserves memory that is aligned on double and pointer boundaries.
 * Hopefully this is sufficient for all practical purposes. Otherwise,
 * we have to do some arcane trickery to determine alignment of non-POD
 * types. Lifetime of the memory is the lifetime of the object.
 */
template <int N, typename T> class SkAlignedSTStorage {
public:
    SkAlignedSTStorage() {}
    SkAlignedSTStorage(SkAlignedSTStorage&&) = delete;
    SkAlignedSTStorage(const SkAlignedSTStorage&) = delete;
    SkAlignedSTStorage& operator=(SkAlignedSTStorage&&) = delete;
    SkAlignedSTStorage& operator=(const SkAlignedSTStorage&) = delete;

    /**
     * Returns void* because this object does not initialize the
     * memory. Use placement new for types that require a cons.
     */
    void* get() { return fStorage.get(); }
    const void* get() const { return fStorage.get(); }
private:
    SkAlignedSStorage<sizeof(T)*N> fStorage;
};

using SkAutoFree = std::unique_ptr<void, SkFunctionWrapper<void, void, sk_free>>;

template<typename C, std::size_t... Is>
constexpr auto SkMakeArrayFromIndexSequence(C c, skstd::index_sequence<Is...>)
-> std::array<skstd::result_of_t<C(std::size_t)>, sizeof...(Is)> {
    return {{ c(Is)... }};
}

template<size_t N, typename C> constexpr auto SkMakeArray(C c)
-> std::array<skstd::result_of_t<C(std::size_t)>, N> {
    return SkMakeArrayFromIndexSequence(c, skstd::make_index_sequence<N>{});
}

#endif