aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/private/SkTLogic.h
blob: c252001a00f1d4992281a5bd4dbcbf7a92c02bff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 *
 * This header provides some of the helpers (std::integral_constant) and
 * type transformations (std::conditional) which will become available with
 * C++11 in the type_traits header.
 */

#ifndef SkTLogic_DEFINED
#define SkTLogic_DEFINED

#include "SkTypes.h"

#include <stddef.h>
#include <stdint.h>

namespace skstd {

using nullptr_t = decltype(nullptr);

template <typename T, T v> struct integral_constant {
    static const/*expr*/ T value = v;
    using value_type = T;
    using type = integral_constant<T, v>;
    //constexpr operator value_type() const noexcept { return value; }
    //constexpr value_type operator()() const noexcept { return value; }
};

template <bool B> using bool_constant = integral_constant<bool, B>;

using true_type = bool_constant<true>;
using false_type = bool_constant<false>;

template <bool B, typename T, typename F> struct conditional { using type = T; };
template <typename T, typename F> struct conditional<false, T, F> { using type = F; };
template <bool B, typename T, typename F> using conditional_t = typename conditional<B, T, F>::type;

template <bool B, typename T = void> struct enable_if { using type = T; };
template <typename T> struct enable_if<false, T> {};
template <bool B, typename T = void> using enable_if_t = typename enable_if<B, T>::type;

template <typename T> struct remove_const { using type = T; };
template <typename T> struct remove_const<const T> { using type = T; };
template <typename T> using remove_const_t = typename remove_const<T>::type;

template <typename T> struct remove_volatile { using type = T; };
template <typename T> struct remove_volatile<volatile T> { using type = T; };
template <typename T> using remove_volatile_t = typename remove_volatile<T>::type;

template <typename T> struct remove_cv { using type = remove_volatile_t<remove_const_t<T>>; };
template <typename T> using remove_cv_t = typename remove_cv<T>::type;

template <typename T> struct remove_reference { using type = T; };
template <typename T> struct remove_reference<T&> { using type = T; };
template <typename T> struct remove_reference<T&&> { using type = T; };
template <typename T> using remove_reference_t = typename remove_reference<T>::type;

template <typename T> struct remove_extent { using type = T; };
template <typename T> struct remove_extent<T[]> { using type = T; };
template <typename T, size_t N> struct remove_extent<T[N]> { using type = T;};
template <typename T> using remove_extent_t = typename remove_extent<T>::type;

template <typename T, typename U> struct is_same : false_type {};
template <typename T> struct is_same<T, T> : true_type {};

template <typename T> struct is_void : is_same<void, remove_cv_t<T>> {};

template <typename T> struct is_const : false_type {};
template <typename T> struct is_const<const T> : true_type {};

template <typename T> struct is_volatile : false_type {};
template <typename T> struct is_volatile<volatile T> : true_type {};

template <typename T> struct is_pointer_detector : false_type {};
template <typename T> struct is_pointer_detector<T*> : true_type {};
template <typename T> struct is_pointer : is_pointer_detector<remove_cv_t<T>> {};

template <typename T> struct is_reference : false_type {};
template <typename T> struct is_reference<T&> : true_type {};
template <typename T> struct is_reference<T&&> : true_type {};

template <typename T> struct is_lvalue_reference : false_type {};
template <typename T> struct is_lvalue_reference<T&> : true_type {};

template <typename T> struct is_rvalue_reference : false_type {};
template <typename T> struct is_rvalue_reference<T&&> : true_type {};

template <typename T> struct is_class_detector {
    using yes_type = uint8_t;
    using no_type = uint16_t;
    template <typename U> static yes_type clazz(int U::*);
    template <typename U> static no_type clazz(...);
    static const/*expr*/ bool value = sizeof(clazz<T>(0)) == sizeof(yes_type) /*&& !is_union<T>::value*/;
};
template <typename T> struct is_class : bool_constant<is_class_detector<T>::value> {};

template <typename T, bool = is_class<T>::value> struct is_empty_detector {
    struct Derived : public T { char unused; };
    static const/*expr*/ bool value = sizeof(Derived) == sizeof(char);
};
template <typename T> struct is_empty_detector<T, false> {
    static const/*expr*/ bool value = false;
};
template <typename T> struct is_empty : bool_constant<is_empty_detector<T>::value> {};

template <typename T> struct is_array : false_type {};
template <typename T> struct is_array<T[]> : true_type {};
template <typename T, size_t N> struct is_array<T[N]> : true_type {};

// template<typename R, typename... Args> struct is_function<
//     R [calling-convention] (Args...[, ...]) [const] [volatile] [&|&&]> : true_type {};
// The cv and ref-qualified versions are strange types we're currently avoiding, so not supported.
// On all platforms, variadic functions only exist in the c calling convention.
template <typename> struct is_function : false_type { };
#if !defined(SK_BUILD_FOR_WIN)
template <typename R, typename... Args> struct is_function<R(Args...)> : true_type {};
#else
#if defined(_M_IX86)
template <typename R, typename... Args> struct is_function<R __cdecl (Args...)> : true_type {};
template <typename R, typename... Args> struct is_function<R __stdcall (Args...)> : true_type {};
template <typename R, typename... Args> struct is_function<R __fastcall (Args...)> : true_type {};
template <typename R, typename... Args> struct is_function<R __vectorcall (Args...)> : true_type {};
#else
template <typename R, typename... Args> struct is_function<R __cdecl (Args...)> : true_type {};
template <typename R, typename... Args> struct is_function<R __vectorcall (Args...)> : true_type {};
#endif
#endif
template <typename R, typename... Args> struct is_function<R(Args..., ...)> : true_type {};

template <typename T> struct add_const { using type = const T; };
template <typename T> using add_const_t = typename add_const<T>::type;

template <typename T> struct add_volatile { using type = volatile T; };
template <typename T> using add_volatile_t = typename add_volatile<T>::type;

template <typename T> struct add_cv { using type = add_volatile_t<add_const_t<T>>; };
template <typename T> using add_cv_t = typename add_cv<T>::type;

template <typename T> struct add_pointer { using type = remove_reference_t<T>*; };
template <typename T> using add_pointer_t = typename add_pointer<T>::type;

template <typename T, bool=is_void<T>::value> struct add_lvalue_reference_init { using type = T; };
template <typename T> struct add_lvalue_reference_init<T, false> { using type = T&; };
template <typename T> struct add_lvalue_reference : add_lvalue_reference_init<T> { };
template <typename T> using add_lvalue_reference_t = typename add_lvalue_reference<T>::type;

template <typename T, bool=is_void<T>::value> struct add_rvalue_reference_init { using type = T; };
template <typename T> struct add_rvalue_reference_init<T, false> { using type = T&&; };
template <typename T> struct add_rvalue_reference : add_rvalue_reference_init<T> {};
template <typename T> using add_rvalue_reference_t = typename add_rvalue_reference<T>::type;

/* This is 'just' a forward declaration. */
template <typename T> add_rvalue_reference_t<T> declval() /*noexcept*/;

template <typename S, typename D, bool=is_void<S>::value||is_function<D>::value||is_array<D>::value>
struct is_convertible_detector {
    static const/*expr*/ bool value = is_void<D>::value;
};
template <typename S, typename D> struct is_convertible_detector<S, D, false> {
    using yes_type = uint8_t;
    using no_type = uint16_t;

    template <typename To> static void param_convertable_to(To);

    template <typename From, typename To>
    static decltype(param_convertable_to<To>(declval<From>()), yes_type()) convertible(int);

    template <typename, typename> static no_type convertible(...);

    static const/*expr*/ bool value = sizeof(convertible<S, D>(0)) == sizeof(yes_type);
};
template<typename S, typename D> struct is_convertible
    : bool_constant<is_convertible_detector<S, D>::value> { };

template <typename T> struct decay {
    using U = remove_reference_t<T>;
    using type = conditional_t<is_array<U>::value,
        remove_extent_t<U>*,
        conditional_t<is_function<U>::value, add_pointer_t<U>, remove_cv_t<U>>>;
};
template <typename T> using decay_t = typename decay<T>::type;

}  // namespace skstd

// The sknonstd namespace contains things we would like to be proposed and feel std-ish.
namespace sknonstd {

// The name 'copy' here is fraught with peril. In this case it means 'append', not 'overwrite'.
// Alternate proposed names are 'propagate', 'augment', or 'append' (and 'add', but already taken).
// std::experimental::propagate_const already exists for other purposes in TSv2.
// These also follow the <dest, source> pattern used by boost.
template <typename D, typename S> struct copy_const {
    using type = skstd::conditional_t<skstd::is_const<S>::value, skstd::add_const_t<D>, D>;
};
template <typename D, typename S> using copy_const_t = typename copy_const<D, S>::type;

template <typename D, typename S> struct copy_volatile {
    using type = skstd::conditional_t<skstd::is_volatile<S>::value, skstd::add_volatile_t<D>, D>;
};
template <typename D, typename S> using copy_volatile_t = typename copy_volatile<D, S>::type;

template <typename D, typename S> struct copy_cv {
    using type = copy_volatile_t<copy_const_t<D, S>, S>;
};
template <typename D, typename S> using copy_cv_t = typename copy_cv<D, S>::type;

// The name 'same' here means 'overwrite'.
// Alternate proposed names are 'replace', 'transfer', or 'qualify_from'.
// same_xxx<D, S> can be written as copy_xxx<remove_xxx_t<D>, S>
template <typename D, typename S> using same_const = copy_const<skstd::remove_const_t<D>, S>;
template <typename D, typename S> using same_const_t = typename same_const<D, S>::type;
template <typename D, typename S> using same_volatile =copy_volatile<skstd::remove_volatile_t<D>,S>;
template <typename D, typename S> using same_volatile_t = typename same_volatile<D, S>::type;
template <typename D, typename S> using same_cv = copy_cv<skstd::remove_cv_t<D>, S>;
template <typename D, typename S> using same_cv_t = typename same_cv<D, S>::type;

}  // namespace sknonstd

// Just a pithier wrapper for enable_if_t.
#define SK_WHEN(condition, T) skstd::enable_if_t<!!(condition), T>

#endif