aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/private/SkTArray.h
blob: 75cd001b72d95e650dc52b83dc989fbe0b8a4ba4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkTArray_DEFINED
#define SkTArray_DEFINED

#include "../private/SkSafe32.h"
#include "../private/SkTLogic.h"
#include "../private/SkTemplates.h"
#include "SkTypes.h"

#include <new>
#include <utility>

/** When MEM_MOVE is true T will be bit copied when moved.
    When MEM_MOVE is false, T will be copy constructed / destructed.
    In all cases T will be default-initialized on allocation,
    and its destructor will be called from this object's destructor.
*/
template <typename T, bool MEM_MOVE = false> class SkTArray {
public:
    /**
     * Creates an empty array with no initial storage
     */
    SkTArray() { this->init(); }

    /**
     * Creates an empty array that will preallocate space for reserveCount
     * elements.
     */
    explicit SkTArray(int reserveCount) { this->init(0, reserveCount); }

    /**
     * Copies one array to another. The new array will be heap allocated.
     */
    explicit SkTArray(const SkTArray& that) {
        this->init(that.fCount);
        this->copy(that.fItemArray);
    }

    explicit SkTArray(SkTArray&& that) {
        // TODO: If 'that' owns its memory why don't we just steal the pointer?
        this->init(that.fCount);
        that.move(fMemArray);
        that.fCount = 0;
    }

    /**
     * Creates a SkTArray by copying contents of a standard C array. The new
     * array will be heap allocated. Be careful not to use this constructor
     * when you really want the (void*, int) version.
     */
    SkTArray(const T* array, int count) {
        this->init(count);
        this->copy(array);
    }

    SkTArray& operator=(const SkTArray& that) {
        if (this == &that) {
            return *this;
        }
        for (int i = 0; i < fCount; ++i) {
            fItemArray[i].~T();
        }
        fCount = 0;
        this->checkRealloc(that.count());
        fCount = that.count();
        this->copy(that.fItemArray);
        return *this;
    }
    SkTArray& operator=(SkTArray&& that) {
        if (this == &that) {
            return *this;
        }
        for (int i = 0; i < fCount; ++i) {
            fItemArray[i].~T();
        }
        fCount = 0;
        this->checkRealloc(that.count());
        fCount = that.count();
        that.move(fMemArray);
        that.fCount = 0;
        return *this;
    }

    ~SkTArray() {
        for (int i = 0; i < fCount; ++i) {
            fItemArray[i].~T();
        }
        if (fOwnMemory) {
            sk_free(fMemArray);
        }
    }

    /**
     * Resets to count() == 0 and resets any reserve count.
     */
    void reset() {
        this->pop_back_n(fCount);
        fReserved = false;
    }

    /**
     * Resets to count() = n newly constructed T objects and resets any reserve count.
     */
    void reset(int n) {
        SkASSERT(n >= 0);
        for (int i = 0; i < fCount; ++i) {
            fItemArray[i].~T();
        }
        // Set fCount to 0 before calling checkRealloc so that no elements are moved.
        fCount = 0;
        this->checkRealloc(n);
        fCount = n;
        for (int i = 0; i < fCount; ++i) {
            new (fItemArray + i) T;
        }
        fReserved = false;
    }

    /**
     * Resets to a copy of a C array and resets any reserve count.
     */
    void reset(const T* array, int count) {
        for (int i = 0; i < fCount; ++i) {
            fItemArray[i].~T();
        }
        fCount = 0;
        this->checkRealloc(count);
        fCount = count;
        this->copy(array);
        fReserved = false;
    }

    /**
     * Ensures there is enough reserved space for n additional elements. The is guaranteed at least
     * until the array size grows above n and subsequently shrinks below n, any version of reset()
     * is called, or reserve() is called again.
     */
    void reserve(int n) {
        SkASSERT(n >= 0);
        if (n > 0) {
            this->checkRealloc(n);
            fReserved = fOwnMemory;
        } else {
            fReserved = false;
        }
    }

    void removeShuffle(int n) {
        SkASSERT(n < fCount);
        int newCount = fCount - 1;
        fCount = newCount;
        fItemArray[n].~T();
        if (n != newCount) {
            this->move(n, newCount);
        }
    }

    /**
     * Number of elements in the array.
     */
    int count() const { return fCount; }

    /**
     * Is the array empty.
     */
    bool empty() const { return !fCount; }

    /**
     * Adds 1 new default-initialized T value and returns it by reference. Note
     * the reference only remains valid until the next call that adds or removes
     * elements.
     */
    T& push_back() {
        void* newT = this->push_back_raw(1);
        return *new (newT) T;
    }

    /**
     * Version of above that uses a copy constructor to initialize the new item
     */
    T& push_back(const T& t) {
        void* newT = this->push_back_raw(1);
        return *new (newT) T(t);
    }

    /**
     * Version of above that uses a move constructor to initialize the new item
     */
    T& push_back(T&& t) {
        void* newT = this->push_back_raw(1);
        return *new (newT) T(std::move(t));
    }

    /**
     *  Construct a new T at the back of this array.
     */
    template<class... Args> T& emplace_back(Args&&... args) {
        void* newT = this->push_back_raw(1);
        return *new (newT) T(std::forward<Args>(args)...);
    }

    /**
     * Allocates n more default-initialized T values, and returns the address of
     * the start of that new range. Note: this address is only valid until the
     * next API call made on the array that might add or remove elements.
     */
    T* push_back_n(int n) {
        SkASSERT(n >= 0);
        void* newTs = this->push_back_raw(n);
        for (int i = 0; i < n; ++i) {
            new (static_cast<char*>(newTs) + i * sizeof(T)) T;
        }
        return static_cast<T*>(newTs);
    }

    /**
     * Version of above that uses a copy constructor to initialize all n items
     * to the same T.
     */
    T* push_back_n(int n, const T& t) {
        SkASSERT(n >= 0);
        void* newTs = this->push_back_raw(n);
        for (int i = 0; i < n; ++i) {
            new (static_cast<char*>(newTs) + i * sizeof(T)) T(t);
        }
        return static_cast<T*>(newTs);
    }

    /**
     * Version of above that uses a copy constructor to initialize the n items
     * to separate T values.
     */
    T* push_back_n(int n, const T t[]) {
        SkASSERT(n >= 0);
        this->checkRealloc(n);
        for (int i = 0; i < n; ++i) {
            new (fItemArray + fCount + i) T(t[i]);
        }
        fCount += n;
        return fItemArray + fCount - n;
    }

    /**
     * Version of above that uses the move constructor to set n items.
     */
    T* move_back_n(int n, T* t) {
        SkASSERT(n >= 0);
        this->checkRealloc(n);
        for (int i = 0; i < n; ++i) {
            new (fItemArray + fCount + i) T(std::move(t[i]));
        }
        fCount += n;
        return fItemArray + fCount - n;
    }

    /**
     * Removes the last element. Not safe to call when count() == 0.
     */
    void pop_back() {
        SkASSERT(fCount > 0);
        --fCount;
        fItemArray[fCount].~T();
        this->checkRealloc(0);
    }

    /**
     * Removes the last n elements. Not safe to call when count() < n.
     */
    void pop_back_n(int n) {
        SkASSERT(n >= 0);
        SkASSERT(fCount >= n);
        fCount -= n;
        for (int i = 0; i < n; ++i) {
            fItemArray[fCount + i].~T();
        }
        this->checkRealloc(0);
    }

    /**
     * Pushes or pops from the back to resize. Pushes will be default
     * initialized.
     */
    void resize_back(int newCount) {
        SkASSERT(newCount >= 0);

        if (newCount > fCount) {
            this->push_back_n(newCount - fCount);
        } else if (newCount < fCount) {
            this->pop_back_n(fCount - newCount);
        }
    }

    /** Swaps the contents of this array with that array. Does a pointer swap if possible,
        otherwise copies the T values. */
    void swap(SkTArray& that) {
        using std::swap;
        if (this == &that) {
            return;
        }
        if (fOwnMemory && that.fOwnMemory) {
            swap(fItemArray, that.fItemArray);
            swap(fCount, that.fCount);
            swap(fAllocCount, that.fAllocCount);
        } else {
            // This could be more optimal...
            SkTArray copy(std::move(that));
            that = std::move(*this);
            *this = std::move(copy);
        }
    }

    T* begin() {
        return fItemArray;
    }
    const T* begin() const {
        return fItemArray;
    }
    T* end() {
        return fItemArray ? fItemArray + fCount : nullptr;
    }
    const T* end() const {
        return fItemArray ? fItemArray + fCount : nullptr;
    }

   /**
     * Get the i^th element.
     */
    T& operator[] (int i) {
        SkASSERT(i < fCount);
        SkASSERT(i >= 0);
        return fItemArray[i];
    }

    const T& operator[] (int i) const {
        SkASSERT(i < fCount);
        SkASSERT(i >= 0);
        return fItemArray[i];
    }

    /**
     * equivalent to operator[](0)
     */
    T& front() { SkASSERT(fCount > 0); return fItemArray[0];}

    const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}

    /**
     * equivalent to operator[](count() - 1)
     */
    T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}

    const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}

    /**
     * equivalent to operator[](count()-1-i)
     */
    T& fromBack(int i) {
        SkASSERT(i >= 0);
        SkASSERT(i < fCount);
        return fItemArray[fCount - i - 1];
    }

    const T& fromBack(int i) const {
        SkASSERT(i >= 0);
        SkASSERT(i < fCount);
        return fItemArray[fCount - i - 1];
    }

    bool operator==(const SkTArray<T, MEM_MOVE>& right) const {
        int leftCount = this->count();
        if (leftCount != right.count()) {
            return false;
        }
        for (int index = 0; index < leftCount; ++index) {
            if (fItemArray[index] != right.fItemArray[index]) {
                return false;
            }
        }
        return true;
    }

    bool operator!=(const SkTArray<T, MEM_MOVE>& right) const {
        return !(*this == right);
    }

    inline int allocCntForTest() const;

protected:
    /**
     * Creates an empty array that will use the passed storage block until it
     * is insufficiently large to hold the entire array.
     */
    template <int N>
    SkTArray(SkAlignedSTStorage<N,T>* storage) {
        this->initWithPreallocatedStorage(0, storage->get(), N);
    }

    /**
     * Copy another array, using preallocated storage if preAllocCount >=
     * array.count(). Otherwise storage will only be used when array shrinks
     * to fit.
     */
    template <int N>
    SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
        this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
        this->copy(array.fItemArray);
    }

    /**
     * Move another array, using preallocated storage if preAllocCount >=
     * array.count(). Otherwise storage will only be used when array shrinks
     * to fit.
     */
    template <int N>
    SkTArray(SkTArray&& array, SkAlignedSTStorage<N,T>* storage) {
        this->initWithPreallocatedStorage(array.fCount, storage->get(), N);
        array.move(fMemArray);
        array.fCount = 0;
    }

    /**
     * Copy a C array, using preallocated storage if preAllocCount >=
     * count. Otherwise storage will only be used when array shrinks
     * to fit.
     */
    template <int N>
    SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
        this->initWithPreallocatedStorage(count, storage->get(), N);
        this->copy(array);
    }

private:
    void init(int count = 0, int reserveCount = 0) {
        SkASSERT(count >= 0);
        SkASSERT(reserveCount >= 0);
        fCount = count;
        if (!count && !reserveCount) {
            fAllocCount = 0;
            fMemArray = nullptr;
            fOwnMemory = true;
            fReserved = false;
        } else {
            fAllocCount = SkTMax(count, SkTMax(kMinHeapAllocCount, reserveCount));
            fMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
            fOwnMemory = true;
            fReserved = reserveCount > 0;
        }
    }

    void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) {
        SkASSERT(count >= 0);
        SkASSERT(preallocCount > 0);
        SkASSERT(preallocStorage);
        fCount = count;
        fMemArray = nullptr;
        fReserved = false;
        if (count > preallocCount) {
            fAllocCount = SkTMax(count, kMinHeapAllocCount);
            fMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
            fOwnMemory = true;
        } else {
            fAllocCount = preallocCount;
            fMemArray = preallocStorage;
            fOwnMemory = false;
        }
    }

    /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage.
     *  In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage.
     */
    void copy(const T* src) {
        // Some types may be trivially copyable, in which case we *could* use memcopy; but
        // MEM_MOVE == true implies that the type is trivially movable, and not necessarily
        // trivially copyable (think sk_sp<>).  So short of adding another template arg, we
        // must be conservative and use copy construction.
        for (int i = 0; i < fCount; ++i) {
            new (fItemArray + i) T(src[i]);
        }
    }

    template <bool E = MEM_MOVE> SK_WHEN(E, void) move(int dst, int src) {
        memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T));
    }
    template <bool E = MEM_MOVE> SK_WHEN(E, void) move(void* dst) {
        sk_careful_memcpy(dst, fMemArray, fCount * sizeof(T));
    }

    template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(int dst, int src) {
        new (&fItemArray[dst]) T(std::move(fItemArray[src]));
        fItemArray[src].~T();
    }
    template <bool E = MEM_MOVE> SK_WHEN(!E, void) move(void* dst) {
        for (int i = 0; i < fCount; ++i) {
            new (static_cast<char*>(dst) + sizeof(T) * i) T(std::move(fItemArray[i]));
            fItemArray[i].~T();
        }
    }

    static constexpr int kMinHeapAllocCount = 8;

    // Helper function that makes space for n objects, adjusts the count, but does not initialize
    // the new objects.
    void* push_back_raw(int n) {
        this->checkRealloc(n);
        void* ptr = fItemArray + fCount;
        fCount += n;
        return ptr;
    }

    void checkRealloc(int delta) {
        SkASSERT(fCount >= 0);
        SkASSERT(fAllocCount >= 0);
        SkASSERT(-delta <= fCount);

        // Move into 64bit math temporarily, to avoid local overflows
        int64_t newCount = fCount + delta;

        // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink
        // when we're currently using preallocated memory, would allocate less than
        // kMinHeapAllocCount, or a reserve count was specified that has yet to be exceeded.
        bool mustGrow = newCount > fAllocCount;
        bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory && !fReserved;
        if (!mustGrow && !shouldShrink) {
            return;
        }


        // Whether we're growing or shrinking, we leave at least 50% extra space for future growth.
        int64_t newAllocCount = newCount + ((newCount + 1) >> 1);
        // Align the new allocation count to kMinHeapAllocCount.
        static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two.");
        newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1);
        // At small sizes the old and new alloc count can both be kMinHeapAllocCount.
        if (newAllocCount == fAllocCount) {
            return;
        }

        fAllocCount = Sk64_pin_to_s32(newAllocCount);
        SkASSERT(fAllocCount >= newCount);
        void* newMemArray = sk_malloc_throw(fAllocCount, sizeof(T));
        this->move(newMemArray);
        if (fOwnMemory) {
            sk_free(fMemArray);

        }
        fMemArray = newMemArray;
        fOwnMemory = true;
        fReserved = false;
    }

    union {
        T*       fItemArray;
        void*    fMemArray;
    };
    int fCount;
    int fAllocCount;
    bool fOwnMemory : 1;
    bool fReserved : 1;
};

template <typename T, bool M> static inline void swap(SkTArray<T, M>& a, SkTArray<T, M>& b) {
    a.swap(b);
}

template<typename T, bool MEM_MOVE> constexpr int SkTArray<T, MEM_MOVE>::kMinHeapAllocCount;

/**
 * Subclass of SkTArray that contains a preallocated memory block for the array.
 */
template <int N, typename T, bool MEM_MOVE= false>
class SkSTArray : public SkTArray<T, MEM_MOVE> {
private:
    typedef SkTArray<T, MEM_MOVE> INHERITED;

public:
    SkSTArray() : INHERITED(&fStorage) {
    }

    SkSTArray(const SkSTArray& array)
        : INHERITED(array, &fStorage) {
    }

    SkSTArray(SkSTArray&& array)
        : INHERITED(std::move(array), &fStorage) {
    }

    explicit SkSTArray(const INHERITED& array)
        : INHERITED(array, &fStorage) {
    }

    explicit SkSTArray(INHERITED&& array)
        : INHERITED(std::move(array), &fStorage) {
    }

    explicit SkSTArray(int reserveCount)
        : INHERITED(reserveCount) {
    }

    SkSTArray(const T* array, int count)
        : INHERITED(array, count, &fStorage) {
    }

    SkSTArray& operator=(const SkSTArray& array) {
        INHERITED::operator=(array);
        return *this;
    }

    SkSTArray& operator=(SkSTArray&& array) {
        INHERITED::operator=(std::move(array));
        return *this;
    }

    SkSTArray& operator=(const INHERITED& array) {
        INHERITED::operator=(array);
        return *this;
    }

    SkSTArray& operator=(INHERITED&& array) {
        INHERITED::operator=(std::move(array));
        return *this;
    }

private:
    SkAlignedSTStorage<N,T> fStorage;
};

#endif