1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkFloatingPoint_DEFINED
#define SkFloatingPoint_DEFINED
#include "SkTypes.h"
#include <math.h>
#include <float.h>
// For _POSIX_VERSION
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <unistd.h>
#endif
#include "SkFloatBits.h"
// C++98 cmath std::pow seems to be the earliest portable way to get float pow.
// However, on Linux including cmath undefines isfinite.
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
static inline float sk_float_pow(float base, float exp) {
return powf(base, exp);
}
#define sk_float_sqrt(x) sqrtf(x)
#define sk_float_sin(x) sinf(x)
#define sk_float_cos(x) cosf(x)
#define sk_float_tan(x) tanf(x)
#define sk_float_floor(x) floorf(x)
#define sk_float_ceil(x) ceilf(x)
#define sk_float_trunc(x) truncf(x)
#ifdef SK_BUILD_FOR_MAC
# define sk_float_acos(x) static_cast<float>(acos(x))
# define sk_float_asin(x) static_cast<float>(asin(x))
#else
# define sk_float_acos(x) acosf(x)
# define sk_float_asin(x) asinf(x)
#endif
#define sk_float_atan2(y,x) atan2f(y,x)
#define sk_float_abs(x) fabsf(x)
#define sk_float_copysign(x, y) copysignf(x, y)
#define sk_float_mod(x,y) fmodf(x,y)
#define sk_float_exp(x) expf(x)
#define sk_float_log(x) logf(x)
#define sk_float_round(x) sk_float_floor((x) + 0.5f)
// can't find log2f on android, but maybe that just a tool bug?
#ifdef SK_BUILD_FOR_ANDROID
static inline float sk_float_log2(float x) {
const double inv_ln_2 = 1.44269504088896;
return (float)(log(x) * inv_ln_2);
}
#else
#define sk_float_log2(x) log2f(x)
#endif
#ifdef SK_BUILD_FOR_WIN
#define sk_float_isfinite(x) _finite(x)
#define sk_float_isnan(x) _isnan(x)
static inline int sk_float_isinf(float x) {
int32_t bits = SkFloat2Bits(x);
return (bits << 1) == (0xFF << 24);
}
#else
#define sk_float_isfinite(x) isfinite(x)
#define sk_float_isnan(x) isnan(x)
#define sk_float_isinf(x) isinf(x)
#endif
#define sk_double_isnan(a) sk_float_isnan(a)
#ifdef SK_USE_FLOATBITS
#define sk_float_floor2int(x) SkFloatToIntFloor(x)
#define sk_float_round2int(x) SkFloatToIntRound(x)
#define sk_float_ceil2int(x) SkFloatToIntCeil(x)
#else
#define sk_float_floor2int(x) (int)sk_float_floor(x)
#define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f)
#define sk_float_ceil2int(x) (int)sk_float_ceil(x)
#endif
#define sk_double_floor(x) floor(x)
#define sk_double_round(x) floor((x) + 0.5)
#define sk_double_ceil(x) ceil(x)
#define sk_double_floor2int(x) (int)floor(x)
#define sk_double_round2int(x) (int)floor((x) + 0.5f)
#define sk_double_ceil2int(x) (int)ceil(x)
extern const uint32_t gIEEENotANumber;
extern const uint32_t gIEEEInfinity;
extern const uint32_t gIEEENegativeInfinity;
#define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber))
#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity))
#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity))
static inline float sk_float_rsqrt_portable(float x) {
// Get initial estimate.
int i = *SkTCast<int*>(&x);
i = 0x5F1FFFF9 - (i>>1);
float estimate = *SkTCast<float*>(&i);
// One step of Newton's method to refine.
const float estimate_sq = estimate*estimate;
estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
return estimate;
}
// Fast, approximate inverse square root.
// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
static inline float sk_float_rsqrt(float x) {
// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
// it at compile time. This is going to be too fast to productively hide behind a function pointer.
//
// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No
// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
//
// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
#elif defined(SK_ARM_HAS_NEON)
// Get initial estimate.
const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
float32x2_t estimate = vrsqrte_f32(xx);
// One step of Newton's method to refine.
const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
#else
return sk_float_rsqrt_portable(x);
#endif
}
// This is the number of significant digits we can print in a string such that when we read that
// string back we get the floating point number we expect. The minimum value C requires is 6, but
// most compilers support 9
#ifdef FLT_DECIMAL_DIG
#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
#else
#define SK_FLT_DECIMAL_DIG 9
#endif
#endif
|