1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkFloatingPoint_DEFINED
#define SkFloatingPoint_DEFINED
#include "../private/SkFloatBits.h"
#include "SkTypes.h"
#include "SkSafe_math.h"
#include <float.h>
#include <math.h>
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
#include <xmmintrin.h>
#elif defined(SK_ARM_HAS_NEON)
#include <arm_neon.h>
#endif
// For _POSIX_VERSION
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <unistd.h>
#endif
// C++98 cmath std::pow seems to be the earliest portable way to get float pow.
// However, on Linux including cmath undefines isfinite.
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
static inline float sk_float_pow(float base, float exp) {
return powf(base, exp);
}
#define sk_float_sqrt(x) sqrtf(x)
#define sk_float_sin(x) sinf(x)
#define sk_float_cos(x) cosf(x)
#define sk_float_tan(x) tanf(x)
#define sk_float_floor(x) floorf(x)
#define sk_float_ceil(x) ceilf(x)
#define sk_float_trunc(x) truncf(x)
#ifdef SK_BUILD_FOR_MAC
# define sk_float_acos(x) static_cast<float>(acos(x))
# define sk_float_asin(x) static_cast<float>(asin(x))
#else
# define sk_float_acos(x) acosf(x)
# define sk_float_asin(x) asinf(x)
#endif
#define sk_float_atan2(y,x) atan2f(y,x)
#define sk_float_abs(x) fabsf(x)
#define sk_float_copysign(x, y) copysignf(x, y)
#define sk_float_mod(x,y) fmodf(x,y)
#define sk_float_exp(x) expf(x)
#define sk_float_log(x) logf(x)
#define sk_float_round(x) sk_float_floor((x) + 0.5f)
// can't find log2f on android, but maybe that just a tool bug?
#ifdef SK_BUILD_FOR_ANDROID
static inline float sk_float_log2(float x) {
const double inv_ln_2 = 1.44269504088896;
return (float)(log(x) * inv_ln_2);
}
#else
#define sk_float_log2(x) log2f(x)
#endif
static inline bool sk_float_isfinite(float x) {
return SkFloatBits_IsFinite(SkFloat2Bits(x));
}
static inline bool sk_float_isinf(float x) {
return SkFloatBits_IsInf(SkFloat2Bits(x));
}
static inline bool sk_float_isnan(float x) {
return !(x == x);
}
#define sk_double_isnan(a) sk_float_isnan(a)
#define SK_MaxS32FitsInFloat 2147483520
#define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat
#define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000
#define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat
/**
* Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
*/
static inline int sk_float_saturate2int(float x) {
x = SkTMin<float>(x, SK_MaxS32FitsInFloat);
x = SkTMax<float>(x, SK_MinS32FitsInFloat);
return (int)x;
}
/**
* Return the closest int for the given double. Returns SK_MaxS32 for NaN.
*/
static inline int sk_double_saturate2int(double x) {
x = SkTMin<double>(x, SK_MaxS32);
x = SkTMax<double>(x, SK_MinS32);
return (int)x;
}
/**
* Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
*/
static inline int64_t sk_float_saturate2int64(float x) {
x = SkTMin<float>(x, SK_MaxS64FitsInFloat);
x = SkTMax<float>(x, SK_MinS64FitsInFloat);
return (int64_t)x;
}
#define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x))
#define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f))
#define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x))
#define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x)
#define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f)
#define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x)
#define sk_double_floor(x) floor(x)
#define sk_double_round(x) floor((x) + 0.5)
#define sk_double_ceil(x) ceil(x)
#define sk_double_floor2int(x) (int)floor(x)
#define sk_double_round2int(x) (int)floor((x) + 0.5f)
#define sk_double_ceil2int(x) (int)ceil(x)
// Cast double to float, ignoring any warning about too-large finite values being cast to float.
// Clang thinks this is undefined, but it's actually implementation defined to return either
// the largest float or infinity (one of the two bracketing representable floats). Good enough!
#if defined(__clang__) && (__clang_major__ * 1000 + __clang_minor__) >= 3007
__attribute__((no_sanitize("float-cast-overflow")))
#endif
static inline float sk_double_to_float(double x) {
return static_cast<float>(x);
}
static const uint32_t kIEEENotANumber = 0x7fffffff;
#define SK_FloatNaN (*SkTCast<const float*>(&kIEEENotANumber))
#define SK_FloatInfinity (+(float)INFINITY)
#define SK_FloatNegativeInfinity (-(float)INFINITY)
static inline float sk_float_rsqrt_portable(float x) {
// Get initial estimate.
int i;
memcpy(&i, &x, 4);
i = 0x5F1FFFF9 - (i>>1);
float estimate;
memcpy(&estimate, &i, 4);
// One step of Newton's method to refine.
const float estimate_sq = estimate*estimate;
estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
return estimate;
}
// Fast, approximate inverse square root.
// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
static inline float sk_float_rsqrt(float x) {
// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
// it at compile time. This is going to be too fast to productively hide behind a function pointer.
//
// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No
// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
//
// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
#elif defined(SK_ARM_HAS_NEON)
// Get initial estimate.
const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
float32x2_t estimate = vrsqrte_f32(xx);
// One step of Newton's method to refine.
const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
#else
return sk_float_rsqrt_portable(x);
#endif
}
// This is the number of significant digits we can print in a string such that when we read that
// string back we get the floating point number we expect. The minimum value C requires is 6, but
// most compilers support 9
#ifdef FLT_DECIMAL_DIG
#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
#else
#define SK_FLT_DECIMAL_DIG 9
#endif
// IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
// so we have a helper that suppresses the possible undefined-behavior warnings.
#ifdef __clang__
__attribute__((no_sanitize("float-divide-by-zero")))
#endif
static inline float sk_ieee_float_divide(float numer, float denom) {
return numer / denom;
}
#ifdef __clang__
__attribute__((no_sanitize("float-divide-by-zero")))
#endif
static inline double sk_ieee_double_divide(double numer, double denom) {
return numer / denom;
}
#endif
|