1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrTypesPriv_DEFINED
#define GrTypesPriv_DEFINED
#include "GrTypes.h"
#include "SkTArray.h"
#include "SkRect.h"
/**
* Types of shader-language-specific boxed variables we can create. (Currently only GrGLShaderVars,
* but should be applicable to other shader languages.)
*/
enum GrSLType {
kVoid_GrSLType,
kFloat_GrSLType,
kVec2f_GrSLType,
kVec3f_GrSLType,
kVec4f_GrSLType,
kMat33f_GrSLType,
kMat44f_GrSLType,
kSampler2D_GrSLType,
kSamplerExternal_GrSLType,
kLast_GrSLType = kSamplerExternal_GrSLType
};
static const int kGrSLTypeCount = kLast_GrSLType + 1;
enum GrShaderType {
kVertex_GrShaderType,
kGeometry_GrShaderType,
kFragment_GrShaderType,
kLastkFragment_GrShaderType = kFragment_GrShaderType
};
static const int kGrShaderTypeCount = kLastkFragment_GrShaderType + 1;
/**
* Precisions of shader language variables. Not all shading languages support precisions or actually
* vary the internal precision based on the qualifiers. These currently only apply to float types (
* including float vectors and matrices).
*/
enum GrSLPrecision {
kLow_GrSLPrecision,
kMedium_GrSLPrecision,
kHigh_GrSLPrecision,
// Default precision is medium. This is because on OpenGL ES 2 highp support is not
// guaranteed. On (non-ES) OpenGL the specifiers have no effect on precision.
kDefault_GrSLPrecision = kMedium_GrSLPrecision,
kLast_GrSLPrecision = kHigh_GrSLPrecision
};
static const int kGrSLPrecisionCount = kLast_GrSLPrecision + 1;
/**
* Gets the vector size of the SLType. Returns -1 for void, matrices, and samplers.
*/
static inline int GrSLTypeVectorCount(GrSLType type) {
SkASSERT(type >= 0 && type < static_cast<GrSLType>(kGrSLTypeCount));
static const int kCounts[] = { -1, 1, 2, 3, 4, -1, -1, -1, -1 };
return kCounts[type];
GR_STATIC_ASSERT(0 == kVoid_GrSLType);
GR_STATIC_ASSERT(1 == kFloat_GrSLType);
GR_STATIC_ASSERT(2 == kVec2f_GrSLType);
GR_STATIC_ASSERT(3 == kVec3f_GrSLType);
GR_STATIC_ASSERT(4 == kVec4f_GrSLType);
GR_STATIC_ASSERT(5 == kMat33f_GrSLType);
GR_STATIC_ASSERT(6 == kMat44f_GrSLType);
GR_STATIC_ASSERT(7 == kSampler2D_GrSLType);
GR_STATIC_ASSERT(8 == kSamplerExternal_GrSLType);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kCounts) == kGrSLTypeCount);
}
/** Return the type enum for a vector of floats of length n (1..4),
e.g. 1 -> kFloat_GrSLType, 2 -> kVec2_GrSLType, ... */
static inline GrSLType GrSLFloatVectorType(int count) {
SkASSERT(count > 0 && count <= 4);
return (GrSLType)(count);
GR_STATIC_ASSERT(kFloat_GrSLType == 1);
GR_STATIC_ASSERT(kVec2f_GrSLType == 2);
GR_STATIC_ASSERT(kVec3f_GrSLType == 3);
GR_STATIC_ASSERT(kVec4f_GrSLType == 4);
}
/** Is the shading language type floating point (or vector/matrix of fp)? */
static inline bool GrSLTypeIsFloatType(GrSLType type) {
SkASSERT(type >= 0 && type < static_cast<GrSLType>(kGrSLTypeCount));
return type >= 1 && type <= 6;
GR_STATIC_ASSERT(0 == kVoid_GrSLType);
GR_STATIC_ASSERT(1 == kFloat_GrSLType);
GR_STATIC_ASSERT(2 == kVec2f_GrSLType);
GR_STATIC_ASSERT(3 == kVec3f_GrSLType);
GR_STATIC_ASSERT(4 == kVec4f_GrSLType);
GR_STATIC_ASSERT(5 == kMat33f_GrSLType);
GR_STATIC_ASSERT(6 == kMat44f_GrSLType);
GR_STATIC_ASSERT(7 == kSampler2D_GrSLType);
GR_STATIC_ASSERT(8 == kSamplerExternal_GrSLType);
GR_STATIC_ASSERT(9 == kGrSLTypeCount);
}
/** Returns the size in bytes for floating point GrSLTypes. For non floating point type returns 0 */
static inline size_t GrSLTypeSize(GrSLType type) {
SkASSERT(GrSLTypeIsFloatType(type));
static const size_t kSizes[] = {
0, // kVoid_GrSLType
sizeof(float), // kFloat_GrSLType
2 * sizeof(float), // kVec2f_GrSLType
3 * sizeof(float), // kVec3f_GrSLType
4 * sizeof(float), // kVec4f_GrSLType
9 * sizeof(float), // kMat33f_GrSLType
16 * sizeof(float), // kMat44f_GrSLType
0, // kSampler2D_GrSLType
0 // kSamplerExternal_GrSLType
};
return kSizes[type];
GR_STATIC_ASSERT(0 == kVoid_GrSLType);
GR_STATIC_ASSERT(1 == kFloat_GrSLType);
GR_STATIC_ASSERT(2 == kVec2f_GrSLType);
GR_STATIC_ASSERT(3 == kVec3f_GrSLType);
GR_STATIC_ASSERT(4 == kVec4f_GrSLType);
GR_STATIC_ASSERT(5 == kMat33f_GrSLType);
GR_STATIC_ASSERT(6 == kMat44f_GrSLType);
GR_STATIC_ASSERT(7 == kSampler2D_GrSLType);
GR_STATIC_ASSERT(8 == kSamplerExternal_GrSLType);
GR_STATIC_ASSERT(9 == kGrSLTypeCount);
}
//////////////////////////////////////////////////////////////////////////////
/**
* Types used to describe format of vertices in arrays.
*/
enum GrVertexAttribType {
kFloat_GrVertexAttribType = 0,
kVec2f_GrVertexAttribType,
kVec3f_GrVertexAttribType,
kVec4f_GrVertexAttribType,
kUByte_GrVertexAttribType, // unsigned byte, e.g. coverage
kVec4ub_GrVertexAttribType, // vector of 4 unsigned bytes, e.g. colors
kVec2s_GrVertexAttribType, // vector of 2 shorts, e.g. texture coordinates
kLast_GrVertexAttribType = kVec2s_GrVertexAttribType
};
static const int kGrVertexAttribTypeCount = kLast_GrVertexAttribType + 1;
/**
* Returns the vector size of the type.
*/
static inline int GrVertexAttribTypeVectorCount(GrVertexAttribType type) {
SkASSERT(type >= 0 && type < kGrVertexAttribTypeCount);
static const int kCounts[] = { 1, 2, 3, 4, 1, 4, 2 };
return kCounts[type];
GR_STATIC_ASSERT(0 == kFloat_GrVertexAttribType);
GR_STATIC_ASSERT(1 == kVec2f_GrVertexAttribType);
GR_STATIC_ASSERT(2 == kVec3f_GrVertexAttribType);
GR_STATIC_ASSERT(3 == kVec4f_GrVertexAttribType);
GR_STATIC_ASSERT(4 == kUByte_GrVertexAttribType);
GR_STATIC_ASSERT(5 == kVec4ub_GrVertexAttribType);
GR_STATIC_ASSERT(6 == kVec2s_GrVertexAttribType);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kCounts) == kGrVertexAttribTypeCount);
}
/**
* Returns the size of the attrib type in bytes.
*/
static inline size_t GrVertexAttribTypeSize(GrVertexAttribType type) {
SkASSERT(type >= 0 && type < kGrVertexAttribTypeCount);
static const size_t kSizes[] = {
sizeof(float), // kFloat_GrVertexAttribType
2*sizeof(float), // kVec2f_GrVertexAttribType
3*sizeof(float), // kVec3f_GrVertexAttribType
4*sizeof(float), // kVec4f_GrVertexAttribType
1*sizeof(char), // kUByte_GrVertexAttribType
4*sizeof(char), // kVec4ub_GrVertexAttribType
2*sizeof(int16_t) // kVec2s_GrVertexAttribType
};
return kSizes[type];
GR_STATIC_ASSERT(0 == kFloat_GrVertexAttribType);
GR_STATIC_ASSERT(1 == kVec2f_GrVertexAttribType);
GR_STATIC_ASSERT(2 == kVec3f_GrVertexAttribType);
GR_STATIC_ASSERT(3 == kVec4f_GrVertexAttribType);
GR_STATIC_ASSERT(4 == kUByte_GrVertexAttribType);
GR_STATIC_ASSERT(5 == kVec4ub_GrVertexAttribType);
GR_STATIC_ASSERT(6 == kVec2s_GrVertexAttribType);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kSizes) == kGrVertexAttribTypeCount);
}
/**
* converts a GrVertexAttribType to a GrSLType
*/
static inline GrSLType GrVertexAttribTypeToSLType(GrVertexAttribType type) {
switch (type) {
default:
SkFAIL("Unsupported type conversion");
return kVoid_GrSLType;
case kUByte_GrVertexAttribType:
case kFloat_GrVertexAttribType:
return kFloat_GrSLType;
case kVec2s_GrVertexAttribType:
case kVec2f_GrVertexAttribType:
return kVec2f_GrSLType;
case kVec3f_GrVertexAttribType:
return kVec3f_GrSLType;
case kVec4ub_GrVertexAttribType:
case kVec4f_GrVertexAttribType:
return kVec4f_GrSLType;
}
}
//////////////////////////////////////////////////////////////////////////////
/**
* We have coverage effects that clip rendering to the edge of some geometric primitive.
* This enum specifies how that clipping is performed. Not all factories that take a
* GrProcessorEdgeType will succeed with all values and it is up to the caller to check for
* a NULL return.
*/
enum GrPrimitiveEdgeType {
kFillBW_GrProcessorEdgeType,
kFillAA_GrProcessorEdgeType,
kInverseFillBW_GrProcessorEdgeType,
kInverseFillAA_GrProcessorEdgeType,
kHairlineAA_GrProcessorEdgeType,
kLast_GrProcessorEdgeType = kHairlineAA_GrProcessorEdgeType
};
static const int kGrProcessorEdgeTypeCnt = kLast_GrProcessorEdgeType + 1;
static inline bool GrProcessorEdgeTypeIsFill(const GrPrimitiveEdgeType edgeType) {
return (kFillAA_GrProcessorEdgeType == edgeType || kFillBW_GrProcessorEdgeType == edgeType);
}
static inline bool GrProcessorEdgeTypeIsInverseFill(const GrPrimitiveEdgeType edgeType) {
return (kInverseFillAA_GrProcessorEdgeType == edgeType ||
kInverseFillBW_GrProcessorEdgeType == edgeType);
}
static inline bool GrProcessorEdgeTypeIsAA(const GrPrimitiveEdgeType edgeType) {
return (kFillBW_GrProcessorEdgeType != edgeType && kInverseFillBW_GrProcessorEdgeType != edgeType);
}
static inline GrPrimitiveEdgeType GrInvertProcessorEdgeType(const GrPrimitiveEdgeType edgeType) {
switch (edgeType) {
case kFillBW_GrProcessorEdgeType:
return kInverseFillBW_GrProcessorEdgeType;
case kFillAA_GrProcessorEdgeType:
return kInverseFillAA_GrProcessorEdgeType;
case kInverseFillBW_GrProcessorEdgeType:
return kFillBW_GrProcessorEdgeType;
case kInverseFillAA_GrProcessorEdgeType:
return kFillAA_GrProcessorEdgeType;
case kHairlineAA_GrProcessorEdgeType:
SkFAIL("Hairline fill isn't invertible.");
}
return kFillAA_GrProcessorEdgeType; // suppress warning.
}
/**
* Indicates the type of pending IO operations that can be recorded for gpu resources.
*/
enum GrIOType {
kRead_GrIOType,
kWrite_GrIOType,
kRW_GrIOType
};
struct GrScissorState {
GrScissorState() : fEnabled(false) {}
void set(const SkIRect& rect) { fRect = rect; fEnabled = true; }
bool operator==(const GrScissorState& other) const {
return fEnabled == other.fEnabled &&
(false == fEnabled || fRect == other.fRect);
}
bool operator!=(const GrScissorState& other) const { return !(*this == other); }
bool enabled() const { return fEnabled; }
const SkIRect& rect() const { return fRect; }
private:
bool fEnabled;
SkIRect fRect;
};
/**
* Indicates the transfer direction for a transfer buffer
*/
enum TransferType {
/** Caller intends to use the buffer to transfer data to the GPU */
kCpuToGpu_TransferType,
/** Caller intends to use the buffer to transfer data from the GPU */
kGpuToCpu_TransferType
};
#ifdef SK_DEBUG
// Takes a pointer to a GrCaps, and will suppress prints if required
#define GrCapsDebugf(caps, ...) \
if (!caps->suppressPrints()) { \
SkDebugf(__VA_ARGS__); \
}
#else
#define GrCapsDebugf(caps, ...)
#endif
#endif
|