aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/gpu/GrProcessor.h
blob: 96ce28840456dc6aa469670f08ac4d16f0bdd83d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef GrProcessor_DEFINED
#define GrProcessor_DEFINED

#include "GrBackendProcessorFactory.h"
#include "GrColor.h"
#include "GrProcessorUnitTest.h"
#include "GrProgramElement.h"
#include "GrTextureAccess.h"
#include "SkMath.h"

class GrContext;
class GrCoordTransform;

/** Provides custom shader code to the Ganesh shading pipeline. GrProcessor objects *must* be
    immutable: after being constructed, their fields may not change.

    Dynamically allocated GrProcessors are managed by a per-thread memory pool. The ref count of an
    processor must reach 0 before the thread terminates and the pool is destroyed. To create a
    static processor use the helper macro GR_CREATE_STATIC_PROCESSOR declared below.
 */
class GrProcessor : public GrProgramElement {
public:
    SK_DECLARE_INST_COUNT(GrProcessor)

    virtual ~GrProcessor();

    struct InvariantOutput{
        InvariantOutput() : fColor(0), fValidFlags(0), fIsSingleComponent(false),
                            fNonMulStageFound(false), fWillUseInputColor(true) {}

        enum ReadInput {
            kWill_ReadInput,
            kWillNot_ReadInput,
        };

        void mulByUnknownOpaqueColor() {
            if (this->isOpaque()) {
                fValidFlags = kA_GrColorComponentFlag;
                fIsSingleComponent = false;
            } else {
                // Since the current state is not opaque we no longer care if the color being
                // multiplied is opaque.
                this->mulByUnknownColor(); 
            }
        }

        void mulByUnknownColor() {
            if (this->hasZeroAlpha()) {
                this->internalSetToTransparentBlack();
            } else {
                this->internalSetToUnknown();
            }
        }

        void mulByUnknownAlpha() {
            if (this->hasZeroAlpha()) {
                this->internalSetToTransparentBlack();
            } else {
                // We don't need to change fIsSingleComponent in this case
                fValidFlags = 0;
            }
        }

        void mulByKnownAlpha(uint8_t alpha) {
            if (this->hasZeroAlpha() || 0 == alpha) {
                this->internalSetToTransparentBlack();
            } else {
                if (alpha != 255) {
                    // Multiply color by alpha
                    fColor = GrColorPackRGBA(SkMulDiv255Round(GrColorUnpackR(fColor), alpha),
                                             SkMulDiv255Round(GrColorUnpackG(fColor), alpha),
                                             SkMulDiv255Round(GrColorUnpackB(fColor), alpha),
                                             SkMulDiv255Round(GrColorUnpackA(fColor), alpha));
                }
            }
        }

        void invalidateComponents(uint8_t invalidateFlags, ReadInput readsInput) {
            fValidFlags &= ~invalidateFlags;
            fIsSingleComponent = false;
            if (kWillNot_ReadInput == readsInput) {
                fWillUseInputColor = false;
            }
        }

        void setToOther(uint8_t validFlags, GrColor color, ReadInput readsInput) {
            fValidFlags = validFlags;
            fColor = color;
            fIsSingleComponent = false;
            fNonMulStageFound = true;
            if (kWillNot_ReadInput == readsInput) {
                fWillUseInputColor = false;
            }
        }

        void setToUnknown(ReadInput readsInput) {
            this->internalSetToUnknown();
            fNonMulStageFound= true;
            if (kWillNot_ReadInput == readsInput) {
                fWillUseInputColor = false;
            }
        }

        bool isOpaque() const {
            return ((fValidFlags & kA_GrColorComponentFlag) && 0xFF == GrColorUnpackA(fColor));
        }

        bool isSolidWhite() const {
            return (fValidFlags == kRGBA_GrColorComponentFlags && 0xFFFFFFFF == fColor);
        }

        GrColor color() const { return fColor; }
        uint8_t validFlags() const { return fValidFlags; }

        /**
         * If isSingleComponent is true, then the flag values for r, g, b, and a must all be the
         * same. If the flags are all set then all color components must be equal.
         */
        SkDEBUGCODE(void validate() const;)

    private:
        void internalSetToTransparentBlack() {
            fValidFlags = kRGBA_GrColorComponentFlags;
            fColor = 0;
            fIsSingleComponent = true;
        }

        void internalSetToUnknown() {
            fValidFlags = 0;
            fIsSingleComponent = false;
        }

        bool hasZeroAlpha() const {
            return ((fValidFlags & kA_GrColorComponentFlag) && 0 == GrColorUnpackA(fColor));
        }

        SkDEBUGCODE(bool colorComponentsAllEqual() const;)
        /**
         * If alpha is valid, check that any valid R,G,B values are <= A
         */
        SkDEBUGCODE(bool validPreMulColor() const;)

        // Friended class that have "controller" code which loop over stages calling
        // computeInvarianteOutput(). These controllers may need to manually adjust the internal
        // members of InvariantOutput
        friend class GrDrawState;
        friend class GrOptDrawState;
        friend class GrPaint;
        friend class GrProcessor;

        GrColor fColor;
        uint32_t fValidFlags;
        bool fIsSingleComponent;
        bool fNonMulStageFound;
        bool fWillUseInputColor;
    };

    /**
     * This function is used to perform optimizations. When called the invarientOuput param
     * indicate whether the input components to this processor in the FS will have known values.
     * In inout the validFlags member is a bitfield of GrColorComponentFlags. The isSingleComponent
     * member indicates whether the input will be 1 or 4 bytes. The function updates the members of
     * inout to indicate known values of its output. A component of the color member only has
     * meaning if the corresponding bit in validFlags is set.
     */
    void computeInvariantOutput(InvariantOutput* inout) const {
        inout->fWillUseInputColor = true;
        this->onComputeInvariantOutput(inout);
#ifdef SK_DEBUG
        inout->validate();
#endif
    }

    /** This object, besides creating back-end-specific helper objects, is used for run-time-type-
        identification. The factory should be an instance of templated class,
        GrTBackendProcessorFactory. It is templated on the subclass of GrProcessor. The subclass
        must have a nested type (or typedef) named GLProcessor which will be the subclass of
        GrGLProcessor created by the factory.

        Example:
        class MyCustomProcessor : public GrProcessor {
        ...
            virtual const GrBackendProcessorFactory& getFactory() const SK_OVERRIDE {
                return GrTBackendProcessorFactory<MyCustomProcessor>::getInstance();
            }
        ...
        };
     */
    virtual const GrBackendProcessorFactory& getFactory() const = 0;

    /** Human-meaningful string to identify this prcoessor; may be embedded
        in generated shader code. */
    const char* name() const;

    int numTextures() const { return fTextureAccesses.count(); }

    /** Returns the access pattern for the texture at index. index must be valid according to
        numTextures(). */
    const GrTextureAccess& textureAccess(int index) const { return *fTextureAccesses[index]; }

    /** Shortcut for textureAccess(index).texture(); */
    GrTexture* texture(int index) const { return this->textureAccess(index).getTexture(); }

    /** Will this processor read the fragment position? */
    bool willReadFragmentPosition() const { return fWillReadFragmentPosition; }

    void* operator new(size_t size);
    void operator delete(void* target);

    void* operator new(size_t size, void* placement) {
        return ::operator new(size, placement);
    }
    void operator delete(void* target, void* placement) {
        ::operator delete(target, placement);
    }

    /**
      * Helper for down-casting to a GrProcessor subclass
      */
    template <typename T> const T& cast() const { return *static_cast<const T*>(this); }

protected:
    GrProcessor() : fWillReadFragmentPosition(false) {}

    /**
     * Subclasses call this from their constructor to register GrTextureAccesses. The processor
     * subclass manages the lifetime of the accesses (this function only stores a pointer). The
     * GrTextureAccess is typically a member field of the GrProcessor subclass. This must only be
     * called from the constructor because GrProcessors are immutable.
     */
    void addTextureAccess(const GrTextureAccess* textureAccess);

    bool hasSameTextureAccesses(const GrProcessor&) const;

    /**
     * If the prcoessor will generate a backend-specific processor that will read the fragment
     * position in the FS then it must call this method from its constructor. Otherwise, the
     * request to access the fragment position will be denied.
     */
    void setWillReadFragmentPosition() { fWillReadFragmentPosition = true; }

private:

    /** 
     * Subclass implements this to support getConstantColorComponents(...).
     */
    virtual void onComputeInvariantOutput(InvariantOutput* inout) const = 0;

    SkSTArray<4, const GrTextureAccess*, true>   fTextureAccesses;
    bool                                         fWillReadFragmentPosition;

    typedef GrProgramElement INHERITED;
};


/**
 * This creates a processor outside of the memory pool. The processor's destructor will be called
 * at global destruction time. NAME will be the name of the created instance.
 */
#define GR_CREATE_STATIC_PROCESSOR(NAME, PROC_CLASS, ARGS)                                 \
static SkAlignedSStorage<sizeof(PROC_CLASS)> g_##NAME##_Storage;                           \
static PROC_CLASS* NAME SkNEW_PLACEMENT_ARGS(g_##NAME##_Storage.get(), PROC_CLASS, ARGS);  \
static SkAutoTDestroy<GrProcessor> NAME##_ad(NAME);

#endif