aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/gpu/GrPaint.h
blob: ff37fcfee899d9f4728d94006208b02f508ed12a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef GrPaint_DEFINED
#define GrPaint_DEFINED

#include "GrColor.h"
#include "GrProcessorStage.h"

#include "SkXfermode.h"

/**
 * The paint describes how color and coverage are computed at each pixel by GrContext draw
 * functions and the how color is blended with the destination pixel.
 *
 * The paint allows installation of custom color and coverage stages. New types of stages are
 * created by subclassing GrProcessor.
 *
 * The primitive color computation starts with the color specified by setColor(). This color is the
 * input to the first color stage. Each color stage feeds its output to the next color stage. The
 * final color stage's output color is input to the color filter specified by
 * setXfermodeColorFilter which produces the final source color, S.
 *
 * Fractional pixel coverage follows a similar flow. The coverage is initially the value specified
 * by setCoverage(). This is input to the first coverage stage. Coverage stages are chained
 * together in the same manner as color stages. The output of the last stage is modulated by any
 * fractional coverage produced by anti-aliasing. This last step produces the final coverage, C.
 *
 * setBlendFunc() specifies blending coefficients for S (described above) and D, the initial value
 * of the destination pixel, labeled Bs and Bd respectively. The final value of the destination
 * pixel is then D' = (1-C)*D + C*(Bd*D + Bs*S).
 *
 * Note that the coverage is applied after the blend. This is why they are computed as distinct
 * values.
 *
 * TODO: Encapsulate setXfermodeColorFilter in a GrProcessor and remove from GrPaint.
 */
class GrPaint {
public:
    GrPaint() { this->reset(); }

    GrPaint(const GrPaint& paint) { *this = paint; }

    ~GrPaint() {}

    /**
     * Sets the blending coefficients to use to blend the final primitive color with the
     * destination color. Defaults to kOne for src and kZero for dst (i.e. src mode).
     */
    void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
        fSrcBlendCoeff = srcCoeff;
        fDstBlendCoeff = dstCoeff;
    }
    GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlendCoeff; }
    GrBlendCoeff getDstBlendCoeff() const { return fDstBlendCoeff; }

    /**
     * The initial color of the drawn primitive. Defaults to solid white.
     */
    void setColor(GrColor color) { fColor = color; }
    GrColor getColor() const { return fColor; }

    /**
     * Applies fractional coverage to the entire drawn primitive. Defaults to 0xff.
     */
    void setCoverage(uint8_t coverage) { fCoverage = coverage; }
    uint8_t getCoverage() const { return fCoverage; }

    /**
     * Should primitives be anti-aliased or not. Defaults to false.
     */
    void setAntiAlias(bool aa) { fAntiAlias = aa; }
    bool isAntiAlias() const { return fAntiAlias; }

    /**
     * Should dithering be applied. Defaults to false.
     */
    void setDither(bool dither) { fDither = dither; }
    bool isDither() const { return fDither; }

    /**
     * Appends an additional color processor to the color computation.
     */
    const GrFragmentProcessor* addColorProcessor(const GrFragmentProcessor* fp) {
        SkASSERT(fp);
        if (!fp->willUseInputColor()) {
            fColorStages.reset();
        }
        SkNEW_APPEND_TO_TARRAY(&fColorStages, GrFragmentStage, (fp));
        return fp;
    }

    /**
     * Appends an additional coverage processor to the coverage computation.
     */
    const GrFragmentProcessor* addCoverageProcessor(const GrFragmentProcessor* fp) {
        SkASSERT(fp);
        if (!fp->willUseInputColor()) {
            fCoverageStages.reset();
        }
        SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrFragmentStage, (fp));
        return fp;
    }

    /**
     * Helpers for adding color or coverage effects that sample a texture. The matrix is applied
     * to the src space position to compute texture coordinates.
     */
    void addColorTextureProcessor(GrTexture*, const SkMatrix&);
    void addCoverageTextureProcessor(GrTexture*, const SkMatrix&);
    void addColorTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&);
    void addCoverageTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&);

    int numColorStages() const { return fColorStages.count(); }
    int numCoverageStages() const { return fCoverageStages.count(); }
    int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }

    const GrFragmentStage& getColorStage(int s) const { return fColorStages[s]; }
    const GrFragmentStage& getCoverageStage(int s) const { return fCoverageStages[s]; }

    GrPaint& operator=(const GrPaint& paint) {
        fSrcBlendCoeff = paint.fSrcBlendCoeff;
        fDstBlendCoeff = paint.fDstBlendCoeff;
        fAntiAlias = paint.fAntiAlias;
        fDither = paint.fDither;

        fColor = paint.fColor;
        fCoverage = paint.fCoverage;

        fColorStages = paint.fColorStages;
        fCoverageStages = paint.fCoverageStages;

        return *this;
    }

    /**
     * Resets the paint to the defaults.
     */
    void reset() {
        this->resetBlend();
        this->resetOptions();
        this->resetColor();
        this->resetCoverage();
        this->resetStages();
    }

    /**
     * Determines whether the drawing with this paint is opaque with respect to both color blending
     * and fractional coverage. It does not consider whether AA has been enabled on the paint or
     * not. Depending upon whether multisampling or coverage-based AA is in use, AA may make the
     * result only apply to the interior of primitives.
     *
     */
    bool isOpaque() const;

    /**
     * Returns true if isOpaque would return true and the paint represents a solid constant color
     * draw. If the result is true, constantColor will be updated to contain the constant color.
     */
    bool isOpaqueAndConstantColor(GrColor* constantColor) const;

private:

    /**
     * Helper for isOpaque and isOpaqueAndConstantColor.
     */
    bool getOpaqueAndKnownColor(GrColor* solidColor, uint32_t* solidColorKnownComponents) const;

    /**
     * Called when the source coord system from which geometry is rendered changes. It ensures that
     * the local coordinates seen by effects remains unchanged. oldToNew gives the transformation
     * from the previous coord system to the new coord system.
     */
    void localCoordChange(const SkMatrix& oldToNew) {
        for (int i = 0; i < fColorStages.count(); ++i) {
            fColorStages[i].localCoordChange(oldToNew);
        }
        for (int i = 0; i < fCoverageStages.count(); ++i) {
            fCoverageStages[i].localCoordChange(oldToNew);
        }
    }

    bool localCoordChangeInverse(const SkMatrix& newToOld) {
        SkMatrix oldToNew;
        bool computed = false;
        for (int i = 0; i < fColorStages.count(); ++i) {
            if (!computed && !newToOld.invert(&oldToNew)) {
                return false;
            } else {
                computed = true;
            }
            fColorStages[i].localCoordChange(oldToNew);
        }
        for (int i = 0; i < fCoverageStages.count(); ++i) {
            if (!computed && !newToOld.invert(&oldToNew)) {
                return false;
            } else {
                computed = true;
            }
            fCoverageStages[i].localCoordChange(oldToNew);
        }
        return true;
    }

    friend class GrContext; // To access above two functions
    friend class GrStencilAndCoverTextContext;  // To access above two functions

    SkSTArray<4, GrFragmentStage> fColorStages;
    SkSTArray<2, GrFragmentStage> fCoverageStages;

    GrBlendCoeff                fSrcBlendCoeff;
    GrBlendCoeff                fDstBlendCoeff;
    bool                        fAntiAlias;
    bool                        fDither;

    GrColor                     fColor;
    uint8_t                     fCoverage;

    void resetBlend() {
        fSrcBlendCoeff = kOne_GrBlendCoeff;
        fDstBlendCoeff = kZero_GrBlendCoeff;
    }

    void resetOptions() {
        fAntiAlias = false;
        fDither = false;
    }

    void resetColor() {
        fColor = GrColorPackRGBA(0xff, 0xff, 0xff, 0xff);
    }

    void resetCoverage() {
        fCoverage = 0xff;
    }

    void resetStages() {
        fColorStages.reset();
        fCoverageStages.reset();
    }
};

#endif