aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/gpu/GrPaint.h
blob: ca9ba5981839f1357cc3207590808de088954e94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef GrPaint_DEFINED
#define GrPaint_DEFINED

#include "GrColor.h"
#include "GrColorSpaceXform.h"
#include "GrXferProcessor.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "GrFragmentProcessor.h"

#include "SkRefCnt.h"
#include "SkRegion.h"
#include "SkXfermode.h"

/**
 * The paint describes how color and coverage are computed at each pixel by GrContext draw
 * functions and the how color is blended with the destination pixel.
 *
 * The paint allows installation of custom color and coverage stages. New types of stages are
 * created by subclassing GrProcessor.
 *
 * The primitive color computation starts with the color specified by setColor(). This color is the
 * input to the first color stage. Each color stage feeds its output to the next color stage.
 *
 * Fractional pixel coverage follows a similar flow. The coverage is initially the value specified
 * by setCoverage(). This is input to the first coverage stage. Coverage stages are chained
 * together in the same manner as color stages. The output of the last stage is modulated by any
 * fractional coverage produced by anti-aliasing. This last step produces the final coverage, C.
 *
 * setXPFactory is used to control blending between the output color and dest. It also implements
 * the application of fractional coverage from the coverage pipeline.
 */
class GrPaint {
public:
    GrPaint();

    GrPaint(const GrPaint& paint) { *this = paint; }

    ~GrPaint() { }

    /**
     * The initial color of the drawn primitive. Defaults to solid white.
     */
    void setColor4f(const GrColor4f& color) { fColor = color; }
    const GrColor4f& getColor4f() const { return fColor; }

    /**
     * Legacy getter, until all code handles 4f directly.
     */
    GrColor getColor() const { return fColor.toGrColor(); }

    /**
     * Should primitives be anti-aliased or not. Defaults to false.
     */
    void setAntiAlias(bool aa) { fAntiAlias = aa; }
    bool isAntiAlias() const { return fAntiAlias; }

    /**
     * Should shader output conversion from linear to sRGB be disabled.
     * Only relevant if the destination is sRGB. Defaults to false.
     */
    void setDisableOutputConversionToSRGB(bool srgb) { fDisableOutputConversionToSRGB = srgb; }
    bool getDisableOutputConversionToSRGB() const { return fDisableOutputConversionToSRGB; }

    /**
     * Should sRGB inputs be allowed to perform sRGB to linear conversion. With this flag
     * set to false, sRGB textures will be treated as linear (including filtering).
     */
    void setAllowSRGBInputs(bool allowSRGBInputs) { fAllowSRGBInputs = allowSRGBInputs; }
    bool getAllowSRGBInputs() const { return fAllowSRGBInputs; }

    /**
     * Does one of the fragment processors need a field of distance vectors to the nearest edge?
     */
    bool usesDistanceVectorField() const { return fUsesDistanceVectorField; }

    /**
     * Should rendering be gamma-correct, end-to-end. Causes sRGB render targets to behave
     * as such (with linear blending), and sRGB inputs to be filtered and decoded correctly.
     */
    void setGammaCorrect(bool gammaCorrect) {
        setDisableOutputConversionToSRGB(!gammaCorrect);
        setAllowSRGBInputs(gammaCorrect);
    }

    void setXPFactory(sk_sp<GrXPFactory> xpFactory) {
        fXPFactory = std::move(xpFactory);
    }

    void setPorterDuffXPFactory(SkXfermode::Mode mode) {
        fXPFactory = GrPorterDuffXPFactory::Make(mode);
    }

    void setCoverageSetOpXPFactory(SkRegion::Op regionOp, bool invertCoverage = false); 

    /**
     * Appends an additional color processor to the color computation.
     */
    void addColorFragmentProcessor(sk_sp<GrFragmentProcessor> fp) {
        SkASSERT(fp);
        fUsesDistanceVectorField |= fp->usesDistanceVectorField();
        fColorFragmentProcessors.push_back(std::move(fp));
    }

    /**
     * Appends an additional coverage processor to the coverage computation.
     */
    void addCoverageFragmentProcessor(sk_sp<GrFragmentProcessor> fp) {
        SkASSERT(fp);
        fUsesDistanceVectorField |= fp->usesDistanceVectorField();
        fCoverageFragmentProcessors.push_back(std::move(fp));
    }

    /**
     * Helpers for adding color or coverage effects that sample a texture. The matrix is applied
     * to the src space position to compute texture coordinates.
     */
    void addColorTextureProcessor(GrTexture*, sk_sp<GrColorSpaceXform>, const SkMatrix&);
    void addCoverageTextureProcessor(GrTexture*, const SkMatrix&);
    void addColorTextureProcessor(GrTexture*, sk_sp<GrColorSpaceXform>, const SkMatrix&,
                                  const GrTextureParams&);
    void addCoverageTextureProcessor(GrTexture*, const SkMatrix&, const GrTextureParams&);

    int numColorFragmentProcessors() const { return fColorFragmentProcessors.count(); }
    int numCoverageFragmentProcessors() const { return fCoverageFragmentProcessors.count(); }
    int numTotalFragmentProcessors() const { return this->numColorFragmentProcessors() +
                                              this->numCoverageFragmentProcessors(); }

    GrXPFactory* getXPFactory() const {
        return fXPFactory.get();
    }

    GrFragmentProcessor* getColorFragmentProcessor(int i) const {
        return fColorFragmentProcessors[i].get();
    }
    GrFragmentProcessor* getCoverageFragmentProcessor(int i) const {
        return fCoverageFragmentProcessors[i].get();
    }

    GrPaint& operator=(const GrPaint& paint) {
        fAntiAlias = paint.fAntiAlias;
        fDisableOutputConversionToSRGB = paint.fDisableOutputConversionToSRGB;
        fAllowSRGBInputs = paint.fAllowSRGBInputs;
        fUsesDistanceVectorField = paint.fUsesDistanceVectorField;

        fColor = paint.fColor;
        fColorFragmentProcessors = paint.fColorFragmentProcessors;
        fCoverageFragmentProcessors = paint.fCoverageFragmentProcessors;

        fXPFactory = paint.fXPFactory;

        return *this;
    }

    /**
     * Returns true if the paint's output color will be constant after blending. If the result is
     * true, constantColor will be updated to contain the constant color. Note that we can conflate
     * coverage and color, so the actual values written to pixels with partial coverage may still
     * not seem constant, even if this function returns true.
     */
    bool isConstantBlendedColor(GrColor* constantColor) const;

private:
    mutable sk_sp<GrXPFactory>                fXPFactory;
    SkSTArray<4, sk_sp<GrFragmentProcessor>>  fColorFragmentProcessors;
    SkSTArray<2, sk_sp<GrFragmentProcessor>>  fCoverageFragmentProcessors;

    bool                                      fAntiAlias;
    bool                                      fDisableOutputConversionToSRGB;
    bool                                      fAllowSRGBInputs;
    bool                                      fUsesDistanceVectorField;

    GrColor4f                                 fColor;
};

#endif