1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTDArray_DEFINED
#define SkTDArray_DEFINED
#include "SkTypes.h"
template <typename T> class SkTDArray {
public:
SkTDArray() {
fReserve = fCount = 0;
fArray = NULL;
}
SkTDArray(const T src[], int count) {
SkASSERT(src || count == 0);
fReserve = fCount = 0;
fArray = NULL;
if (count) {
fArray = (T*)sk_malloc_throw(count * sizeof(T));
memcpy(fArray, src, sizeof(T) * count);
fReserve = fCount = count;
}
}
SkTDArray(const SkTDArray<T>& src) {
fReserve = fCount = 0;
fArray = NULL;
SkTDArray<T> tmp(src.fArray, src.fCount);
this->swap(tmp);
}
~SkTDArray() {
sk_free(fArray);
}
SkTDArray<T>& operator=(const SkTDArray<T>& src) {
if (this != &src) {
if (src.fCount > fReserve) {
SkTDArray<T> tmp(src.fArray, src.fCount);
this->swap(tmp);
} else {
memcpy(fArray, src.fArray, sizeof(T) * src.fCount);
fCount = src.fCount;
}
}
return *this;
}
friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) {
return a.fCount == b.fCount &&
(a.fCount == 0 ||
!memcmp(a.fArray, b.fArray, a.fCount * sizeof(T)));
}
friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) {
return !(a == b);
}
void swap(SkTDArray<T>& other) {
SkTSwap(fArray, other.fArray);
SkTSwap(fReserve, other.fReserve);
SkTSwap(fCount, other.fCount);
}
/** Return a ptr to the array of data, to be freed with sk_free. This also
resets the SkTDArray to be empty.
*/
T* detach() {
T* array = fArray;
fArray = NULL;
fReserve = fCount = 0;
return array;
}
bool isEmpty() const { return fCount == 0; }
/**
* Return the number of elements in the array
*/
int count() const { return fCount; }
/**
* Return the total number of elements allocated.
* reserved() - count() gives you the number of elements you can add
* without causing an allocation.
*/
int reserved() const { return fReserve; }
/**
* return the number of bytes in the array: count * sizeof(T)
*/
size_t bytes() const { return fCount * sizeof(T); }
T* begin() { return fArray; }
const T* begin() const { return fArray; }
T* end() { return fArray ? fArray + fCount : NULL; }
const T* end() const { return fArray ? fArray + fCount : NULL; }
T& operator[](int index) {
SkASSERT(index < fCount);
return fArray[index];
}
const T& operator[](int index) const {
SkASSERT(index < fCount);
return fArray[index];
}
T& getAt(int index) {
return (*this)[index];
}
const T& getAt(int index) const {
return (*this)[index];
}
void reset() {
if (fArray) {
sk_free(fArray);
fArray = NULL;
fReserve = fCount = 0;
} else {
SkASSERT(fReserve == 0 && fCount == 0);
}
}
void rewind() {
// same as setCount(0)
fCount = 0;
}
/**
* Sets the number of elements in the array.
* If the array does not have space for count elements, it will increase
* the storage allocated to some amount greater than that required.
* It will never shrink the storage.
*/
void setCount(int count) {
SkASSERT(count >= 0);
if (count > fReserve) {
this->resizeStorageToAtLeast(count);
}
fCount = count;
}
void setReserve(int reserve) {
if (reserve > fReserve) {
this->resizeStorageToAtLeast(reserve);
}
}
T* prepend() {
this->adjustCount(1);
memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T));
return fArray;
}
T* append() {
return this->append(1, NULL);
}
T* append(int count, const T* src = NULL) {
int oldCount = fCount;
if (count) {
SkASSERT(src == NULL || fArray == NULL ||
src + count <= fArray || fArray + oldCount <= src);
this->adjustCount(count);
if (src) {
memcpy(fArray + oldCount, src, sizeof(T) * count);
}
}
return fArray + oldCount;
}
T* appendClear() {
T* result = this->append();
*result = 0;
return result;
}
T* insert(int index) {
return this->insert(index, 1, NULL);
}
T* insert(int index, int count, const T* src = NULL) {
SkASSERT(count);
SkASSERT(index <= fCount);
size_t oldCount = fCount;
this->adjustCount(count);
T* dst = fArray + index;
memmove(dst + count, dst, sizeof(T) * (oldCount - index));
if (src) {
memcpy(dst, src, sizeof(T) * count);
}
return dst;
}
void remove(int index, int count = 1) {
SkASSERT(index + count <= fCount);
fCount = fCount - count;
memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index));
}
void removeShuffle(int index) {
SkASSERT(index < fCount);
int newCount = fCount - 1;
fCount = newCount;
if (index != newCount) {
memcpy(fArray + index, fArray + newCount, sizeof(T));
}
}
int find(const T& elem) const {
const T* iter = fArray;
const T* stop = fArray + fCount;
for (; iter < stop; iter++) {
if (*iter == elem) {
return SkToInt(iter - fArray);
}
}
return -1;
}
int rfind(const T& elem) const {
const T* iter = fArray + fCount;
const T* stop = fArray;
while (iter > stop) {
if (*--iter == elem) {
return SkToInt(iter - stop);
}
}
return -1;
}
/**
* Returns true iff the array contains this element.
*/
bool contains(const T& elem) const {
return (this->find(elem) >= 0);
}
/**
* Copies up to max elements into dst. The number of items copied is
* capped by count - index. The actual number copied is returned.
*/
int copyRange(T* dst, int index, int max) const {
SkASSERT(max >= 0);
SkASSERT(!max || dst);
if (index >= fCount) {
return 0;
}
int count = SkMin32(max, fCount - index);
memcpy(dst, fArray + index, sizeof(T) * count);
return count;
}
void copy(T* dst) const {
this->copyRange(dst, 0, fCount);
}
// routines to treat the array like a stack
T* push() { return this->append(); }
void push(const T& elem) { *this->append() = elem; }
const T& top() const { return (*this)[fCount - 1]; }
T& top() { return (*this)[fCount - 1]; }
void pop(T* elem) { SkASSERT(fCount > 0); if (elem) *elem = (*this)[fCount - 1]; --fCount; }
void pop() { SkASSERT(fCount > 0); --fCount; }
void deleteAll() {
T* iter = fArray;
T* stop = fArray + fCount;
while (iter < stop) {
delete *iter;
iter += 1;
}
this->reset();
}
void freeAll() {
T* iter = fArray;
T* stop = fArray + fCount;
while (iter < stop) {
sk_free(*iter);
iter += 1;
}
this->reset();
}
void unrefAll() {
T* iter = fArray;
T* stop = fArray + fCount;
while (iter < stop) {
(*iter)->unref();
iter += 1;
}
this->reset();
}
void safeUnrefAll() {
T* iter = fArray;
T* stop = fArray + fCount;
while (iter < stop) {
SkSafeUnref(*iter);
iter += 1;
}
this->reset();
}
void visitAll(void visitor(T&)) {
T* stop = this->end();
for (T* curr = this->begin(); curr < stop; curr++) {
if (*curr) {
visitor(*curr);
}
}
}
#ifdef SK_DEBUG
void validate() const {
SkASSERT((fReserve == 0 && fArray == NULL) ||
(fReserve > 0 && fArray != NULL));
SkASSERT(fCount <= fReserve);
}
#endif
void shrinkToFit() {
fReserve = fCount;
fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T));
}
private:
T* fArray;
int fReserve;
int fCount;
/**
* Adjusts the number of elements in the array.
* This is the same as calling setCount(count() + delta).
*/
void adjustCount(int delta) {
this->setCount(fCount + delta);
}
/**
* Increase the storage allocation such that it can hold (fCount + extra)
* elements.
* It never shrinks the allocation, and it may increase the allocation by
* more than is strictly required, based on a private growth heuristic.
*
* note: does NOT modify fCount
*/
void resizeStorageToAtLeast(int count) {
SkASSERT(count > fReserve);
fReserve = count + 4;
fReserve += fReserve / 4;
fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T));
}
};
#endif
|