aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkScalar.h
blob: feea687d0a4d0bb6e05e04e7e89cbd4ea9cdcf1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkScalar_DEFINED
#define SkScalar_DEFINED

#include "SkFixed.h"
#include "SkFloatingPoint.h"

//#define SK_SUPPORT_DEPRECATED_SCALARROUND

// TODO: move this sort of check into SkPostConfig.h
#define SK_SCALAR_IS_DOUBLE 0
#undef SK_SCALAR_IS_FLOAT
#define SK_SCALAR_IS_FLOAT  1


#if SK_SCALAR_IS_FLOAT

typedef float SkScalar;

#define SK_Scalar1                  1.0f
#define SK_ScalarHalf               0.5f
#define SK_ScalarSqrt2              1.41421356f
#define SK_ScalarPI                 3.14159265f
#define SK_ScalarTanPIOver8         0.414213562f
#define SK_ScalarRoot2Over2         0.707106781f
#define SK_ScalarMax                3.402823466e+38f
#define SK_ScalarInfinity           SK_FloatInfinity
#define SK_ScalarNegativeInfinity   SK_FloatNegativeInfinity
#define SK_ScalarNaN                SK_FloatNaN

#define SkFixedToScalar(x)          SkFixedToFloat(x)
#define SkScalarToFixed(x)          SkFloatToFixed(x)

#define SkScalarFloorToScalar(x)    sk_float_floor(x)
#define SkScalarCeilToScalar(x)     sk_float_ceil(x)
#define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)

#define SkScalarFloorToInt(x)       sk_float_floor2int(x)
#define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
#define SkScalarRoundToInt(x)       sk_float_round2int(x)

#define SkScalarAbs(x)              sk_float_abs(x)
#define SkScalarCopySign(x, y)      sk_float_copysign(x, y)
#define SkScalarMod(x, y)           sk_float_mod(x,y)
#define SkScalarFraction(x)         sk_float_mod(x, 1.0f)
#define SkScalarSqrt(x)             sk_float_sqrt(x)
#define SkScalarPow(b, e)           sk_float_pow(b, e)

#define SkScalarSin(radians)        (float)sk_float_sin(radians)
#define SkScalarCos(radians)        (float)sk_float_cos(radians)
#define SkScalarTan(radians)        (float)sk_float_tan(radians)
#define SkScalarASin(val)           (float)sk_float_asin(val)
#define SkScalarACos(val)           (float)sk_float_acos(val)
#define SkScalarATan2(y, x)         (float)sk_float_atan2(y,x)
#define SkScalarExp(x)              (float)sk_float_exp(x)
#define SkScalarLog(x)              (float)sk_float_log(x)

#else   // SK_SCALAR_IS_DOUBLE

typedef double SkScalar;

#define SK_Scalar1                  1.0
#define SK_ScalarHalf               0.5
#define SK_ScalarSqrt2              1.414213562373095
#define SK_ScalarPI                 3.141592653589793
#define SK_ScalarTanPIOver8         0.4142135623731
#define SK_ScalarRoot2Over2         0.70710678118655
#define SK_ScalarMax                1.7976931348623157+308
#define SK_ScalarInfinity           SK_DoubleInfinity
#define SK_ScalarNegativeInfinity   SK_DoubleNegativeInfinity
#define SK_ScalarNaN                SK_DoubleNaN

#define SkFixedToScalar(x)          SkFixedToDouble(x)
#define SkScalarToFixed(x)          SkDoubleToFixed(x)

#define SkScalarFloorToScalar(x)    floor(x)
#define SkScalarCeilToScalar(x)     ceil(x)
#define SkScalarRoundToScalar(x)    floor((x) + 0.5)

#define SkScalarFloorToInt(x)       (int)floor(x)
#define SkScalarCeilToInt(x)        (int)ceil(x)
#define SkScalarRoundToInt(x)       (int)floor((x) + 0.5)

#define SkScalarAbs(x)              abs(x)
#define SkScalarCopySign(x, y)      copysign(x, y)
#define SkScalarMod(x, y)           fmod(x,y)
#define SkScalarFraction(x)         fmod(x, 1.0)
#define SkScalarSqrt(x)             sqrt(x)
#define SkScalarPow(b, e)           pow(b, e)

#define SkScalarSin(radians)        sin(radians)
#define SkScalarCos(radians)        cos(radians)
#define SkScalarTan(radians)        tan(radians)
#define SkScalarASin(val)           asin(val)
#define SkScalarACos(val)           acos(val)
#define SkScalarATan2(y, x)         atan2(y,x)
#define SkScalarExp(x)              exp(x)
#define SkScalarLog(x)              log(x)

#endif

//////////////////////////////////////////////////////////////////////////////////////////////////

#define SkIntToScalar(x)        static_cast<SkScalar>(x)
#define SkScalarTruncToInt(x)   static_cast<int>(x)

#define SkScalarToFloat(x)      static_cast<float>(x)
#define SkFloatToScalar(x)      static_cast<SkScalar>(x)
#define SkScalarToDouble(x)     static_cast<double>(x)
#define SkDoubleToScalar(x)     static_cast<SkScalar>(x)

#define SK_ScalarMin            (-SK_ScalarMax)

static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }

/** Returns true if x is not NaN and not infinite
 */
static inline bool SkScalarIsFinite(SkScalar x) {
    // We rely on the following behavior of infinities and nans
    // 0 * finite --> 0
    // 0 * infinity --> NaN
    // 0 * NaN --> NaN
    SkScalar prod = x * 0;
    // At this point, prod will either be NaN or 0
    // Therefore we can return (prod == prod) or (0 == prod).
    return prod == prod;
}

/**
 *  Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
 *  double, to avoid possibly losing the low bit(s) of the answer before calling floor().
 *
 *  This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
 *  extra precision is known to be valuable.
 *
 *  In particular, this catches the following case:
 *      SkScalar x = 0.49999997;
 *      int ix = SkScalarRoundToInt(x);
 *      SkASSERT(0 == ix);    // <--- fails
 *      ix = SkDScalarRoundToInt(x);
 *      SkASSERT(0 == ix);    // <--- succeeds
 */
static inline int SkDScalarRoundToInt(SkScalar x) {
    double xx = x;
    xx += 0.5;
    return (int)floor(xx);
}

static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
    return x < 0 ? 0 : x > max ? max : x;
}

static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
    return x < min ? min : x > max ? max : x;
}

SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);

static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }

#define SkScalarMul(a, b)       ((SkScalar)(a) * (b))
#define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c))
#define SkScalarDiv(a, b)       ((SkScalar)(a) / (b))
#define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c))
#define SkScalarInvert(x)       (SK_Scalar1 / (x))
#define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
#define SkScalarAve(a, b)       (((a) + (b)) * SK_ScalarHalf)
#define SkScalarHalf(a)         ((a) * SK_ScalarHalf)

#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))

static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }

static inline bool SkScalarIsInt(SkScalar x) {
    return x == (SkScalar)(int)x;
}

// DEPRECATED : use ToInt or ToScalar variant
#ifdef SK_SUPPORT_DEPRECATED_SCALARROUND
#   define SkScalarFloor(x)    SkScalarFloorToInt(x)
#   define SkScalarCeil(x)     SkScalarCeilToInt(x)
#   define SkScalarRound(x)    SkScalarRoundToInt(x)
#endif

/**
 *  Returns -1 || 0 || 1 depending on the sign of value:
 *  -1 if x < 0
 *   0 if x == 0
 *   1 if x > 0
 */
static inline int SkScalarSignAsInt(SkScalar x) {
    return x < 0 ? -1 : (x > 0);
}

// Scalar result version of above
static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
    return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
}

#define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))

static inline bool SkScalarNearlyZero(SkScalar x,
                                    SkScalar tolerance = SK_ScalarNearlyZero) {
    SkASSERT(tolerance >= 0);
    return SkScalarAbs(x) <= tolerance;
}

static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
                                     SkScalar tolerance = SK_ScalarNearlyZero) {
    SkASSERT(tolerance >= 0);
    return SkScalarAbs(x-y) <= tolerance;
}

/** Linearly interpolate between A and B, based on t.
    If t is 0, return A
    If t is 1, return B
    else interpolate.
    t must be [0..SK_Scalar1]
*/
static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
    SkASSERT(t >= 0 && t <= SK_Scalar1);
    return A + (B - A) * t;
}

/** Interpolate along the function described by (keys[length], values[length])
    for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
    clamp to the min or max value.  This function was inspired by a desire
    to change the multiplier for thickness in fakeBold; therefore it assumes
    the number of pairs (length) will be small, and a linear search is used.
    Repeated keys are allowed for discontinuous functions (so long as keys is
    monotonically increasing), and if key is the value of a repeated scalar in
    keys, the first one will be used.  However, that may change if a binary
    search is used.
*/
SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
                            const SkScalar values[], int length);

/*
 *  Helper to compare an array of scalars.
 */
static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
    SkASSERT(n >= 0);
    for (int i = 0; i < n; ++i) {
        if (a[i] != b[i]) {
            return false;
        }
    }
    return true;
}

#endif