1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRefCnt_DEFINED
#define SkRefCnt_DEFINED
#include "SkThread.h"
#include "SkInstCnt.h"
/** \class SkRefCnt
SkRefCnt is the base class for objects that may be shared by multiple
objects. When an existing owner wants to share a reference, it calls ref().
When an owner wants to release its reference, it calls unref(). When the
shared object's reference count goes to zero as the result of an unref()
call, its (virtual) destructor is called. It is an error for the
destructor to be called explicitly (or via the object going out of scope on
the stack or calling delete) if getRefCnt() > 1.
*/
class SK_API SkRefCnt : SkNoncopyable {
public:
DECLARE_INST_COUNT
/** Default construct, initializing the reference count to 1.
*/
SkRefCnt() : fRefCnt(1) {}
/** Destruct, asserting that the reference count is 1.
*/
virtual ~SkRefCnt() {
#ifdef SK_DEBUG
SkASSERT(fRefCnt == 1);
fRefCnt = 0; // illegal value, to catch us if we reuse after delete
#endif
}
/** Return the reference count.
*/
int32_t getRefCnt() const { return fRefCnt; }
/** Increment the reference count. Must be balanced by a call to unref().
*/
void ref() const {
SkASSERT(fRefCnt > 0);
sk_atomic_inc(&fRefCnt); // No barrier required.
}
/** Decrement the reference count. If the reference count is 1 before the
decrement, then delete the object. Note that if this is the case, then
the object needs to have been allocated via new, and not on the stack.
*/
void unref() const {
SkASSERT(fRefCnt > 0);
// Release barrier (SL/S), if not provided below.
if (sk_atomic_dec(&fRefCnt) == 1) {
// Aquire barrier (L/SL), if not provided above.
// Prevents code in dispose from happening before the decrement.
sk_membar_aquire__after_atomic_dec();
internal_dispose();
}
}
void validate() const {
SkASSERT(fRefCnt > 0);
}
private:
/** Called when the ref count goes to 0.
*/
virtual void internal_dispose() const {
#ifdef SK_DEBUG
// so our destructor won't complain
fRefCnt = 1;
#endif
SkDELETE(this);
}
friend class SkWeakRefCnt;
mutable int32_t fRefCnt;
};
///////////////////////////////////////////////////////////////////////////////
/** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
null in on each side of the assignment, and ensuring that ref() is called
before unref(), in case the two pointers point to the same object.
*/
#define SkRefCnt_SafeAssign(dst, src) \
do { \
if (src) src->ref(); \
if (dst) dst->unref(); \
dst = src; \
} while (0)
/** Check if the argument is non-null, and if so, call obj->ref()
*/
template <typename T> static inline void SkSafeRef(T* obj) {
if (obj) {
obj->ref();
}
}
/** Check if the argument is non-null, and if so, call obj->unref()
*/
template <typename T> static inline void SkSafeUnref(T* obj) {
if (obj) {
obj->unref();
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* Utility class that simply unref's its argument in the destructor.
*/
template <typename T> class SkAutoTUnref : SkNoncopyable {
public:
explicit SkAutoTUnref(T* obj = NULL) : fObj(obj) {}
~SkAutoTUnref() { SkSafeUnref(fObj); }
T* get() const { return fObj; }
void reset(T* obj) {
SkSafeUnref(fObj);
fObj = obj;
}
/**
* Return the hosted object (which may be null), transferring ownership.
* The reference count is not modified, and the internal ptr is set to NULL
* so unref() will not be called in our destructor. A subsequent call to
* detach() will do nothing and return null.
*/
T* detach() {
T* obj = fObj;
fObj = NULL;
return obj;
}
/**
* BlockRef<B> is a type which inherits from B, cannot be created,
* and makes ref and unref private.
*/
template<typename B> class BlockRef : public B {
private:
BlockRef();
void ref() const;
void unref() const;
};
/**
* SkAutoTUnref assumes ownership of the ref. As a result, it is an error
* for the user to ref or unref through SkAutoTUnref. Therefore
* SkAutoTUnref::operator-> returns BlockRef<T>*. This prevents use of
* skAutoTUnrefInstance->ref() and skAutoTUnrefInstance->unref().
*/
BlockRef<T> *operator->() const {
return static_cast<BlockRef<T>*>(fObj);
}
operator T*() { return fObj; }
private:
T* fObj;
};
class SkAutoUnref : public SkAutoTUnref<SkRefCnt> {
public:
SkAutoUnref(SkRefCnt* obj) : SkAutoTUnref<SkRefCnt>(obj) {}
};
class SkAutoRef : SkNoncopyable {
public:
SkAutoRef(SkRefCnt* obj) : fObj(obj) { SkSafeRef(obj); }
~SkAutoRef() { SkSafeUnref(fObj); }
private:
SkRefCnt* fObj;
};
/** Wrapper class for SkRefCnt pointers. This manages ref/unref of a pointer to
a SkRefCnt (or subclass) object.
*/
template <typename T> class SkRefPtr {
public:
SkRefPtr() : fObj(NULL) {}
SkRefPtr(T* obj) : fObj(obj) { SkSafeRef(fObj); }
SkRefPtr(const SkRefPtr& o) : fObj(o.fObj) { SkSafeRef(fObj); }
~SkRefPtr() { SkSafeUnref(fObj); }
SkRefPtr& operator=(const SkRefPtr& rp) {
SkRefCnt_SafeAssign(fObj, rp.fObj);
return *this;
}
SkRefPtr& operator=(T* obj) {
SkRefCnt_SafeAssign(fObj, obj);
return *this;
}
T* get() const { return fObj; }
T& operator*() const { return *fObj; }
T* operator->() const { return fObj; }
typedef T* SkRefPtr::*unspecified_bool_type;
operator unspecified_bool_type() const {
return fObj ? &SkRefPtr::fObj : NULL;
}
private:
T* fObj;
};
#endif
|