1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRect_DEFINED
#define SkRect_DEFINED
#include "SkPoint.h"
#include "SkSize.h"
/** \struct SkIRect
SkIRect holds four 32 bit integer coordinates for a rectangle
*/
struct SK_API SkIRect {
int32_t fLeft, fTop, fRight, fBottom;
static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() {
SkIRect r;
r.setEmpty();
return r;
}
static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) {
SkIRect r;
r.set(0, 0, w, h);
return r;
}
static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) {
SkIRect r;
r.set(0, 0, size.width(), size.height());
return r;
}
static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) {
SkIRect rect;
rect.set(l, t, r, b);
return rect;
}
static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) {
SkIRect r;
r.set(x, y, x + w, y + h);
return r;
}
int left() const { return fLeft; }
int top() const { return fTop; }
int right() const { return fRight; }
int bottom() const { return fBottom; }
/** return the left edge of the rect */
int x() const { return fLeft; }
/** return the top edge of the rect */
int y() const { return fTop; }
/**
* Returns the rectangle's width. This does not check for a valid rect
* (i.e. left <= right) so the result may be negative.
*/
int width() const { return fRight - fLeft; }
/**
* Returns the rectangle's height. This does not check for a valid rect
* (i.e. top <= bottom) so the result may be negative.
*/
int height() const { return fBottom - fTop; }
/**
* Since the center of an integer rect may fall on a factional value, this
* method is defined to return (right + left) >> 1.
*
* This is a specific "truncation" of the average, which is different than
* (right + left) / 2 when the sum is negative.
*/
int centerX() const { return (fRight + fLeft) >> 1; }
/**
* Since the center of an integer rect may fall on a factional value, this
* method is defined to return (bottom + top) >> 1
*
* This is a specific "truncation" of the average, which is different than
* (bottom + top) / 2 when the sum is negative.
*/
int centerY() const { return (fBottom + fTop) >> 1; }
/**
* Return true if the rectangle's width or height are <= 0
*/
bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
friend bool operator==(const SkIRect& a, const SkIRect& b) {
return !memcmp(&a, &b, sizeof(a));
}
friend bool operator!=(const SkIRect& a, const SkIRect& b) {
return !(a == b);
}
bool is16Bit() const {
return SkIsS16(fLeft) && SkIsS16(fTop) &&
SkIsS16(fRight) && SkIsS16(fBottom);
}
/** Set the rectangle to (0,0,0,0)
*/
void setEmpty() { memset(this, 0, sizeof(*this)); }
void set(int32_t left, int32_t top, int32_t right, int32_t bottom) {
fLeft = left;
fTop = top;
fRight = right;
fBottom = bottom;
}
// alias for set(l, t, r, b)
void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) {
this->set(left, top, right, bottom);
}
void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) {
fLeft = x;
fTop = y;
fRight = x + width;
fBottom = y + height;
}
/**
* Make the largest representable rectangle
*/
void setLargest() {
fLeft = fTop = SK_MinS32;
fRight = fBottom = SK_MaxS32;
}
/**
* Make the largest representable rectangle, but inverted (e.g. fLeft will
* be max 32bit and right will be min 32bit).
*/
void setLargestInverted() {
fLeft = fTop = SK_MaxS32;
fRight = fBottom = SK_MinS32;
}
/** Offset set the rectangle by adding dx to its left and right,
and adding dy to its top and bottom.
*/
void offset(int32_t dx, int32_t dy) {
fLeft += dx;
fTop += dy;
fRight += dx;
fBottom += dy;
}
void offset(const SkIPoint& delta) {
this->offset(delta.fX, delta.fY);
}
/**
* Offset this rect such its new x() and y() will equal newX and newY.
*/
void offsetTo(int32_t newX, int32_t newY) {
fRight += newX - fLeft;
fBottom += newY - fTop;
fLeft = newX;
fTop = newY;
}
/** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards,
making the rectangle narrower. If dx is negative, then the sides are moved outwards,
making the rectangle wider. The same holds true for dy and the top and bottom.
*/
void inset(int32_t dx, int32_t dy) {
fLeft += dx;
fTop += dy;
fRight -= dx;
fBottom -= dy;
}
/** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
moved outwards, making the rectangle wider. If dx is negative, then the
sides are moved inwards, making the rectangle narrower. The same holds
true for dy and the top and bottom.
*/
void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); }
bool quickReject(int l, int t, int r, int b) const {
return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b;
}
/** Returns true if (x,y) is inside the rectangle and the rectangle is not
empty. The left and top are considered to be inside, while the right
and bottom are not. Thus for the rectangle (0, 0, 5, 10), the
points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not.
*/
bool contains(int32_t x, int32_t y) const {
return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) &&
(unsigned)(y - fTop) < (unsigned)(fBottom - fTop);
}
/** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle.
If either rectangle is empty, contains() returns false.
*/
bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const {
return left < right && top < bottom && !this->isEmpty() && // check for empties
fLeft <= left && fTop <= top &&
fRight >= right && fBottom >= bottom;
}
/** Returns true if the specified rectangle r is inside or equal to this rectangle.
*/
bool contains(const SkIRect& r) const {
return !r.isEmpty() && !this->isEmpty() && // check for empties
fLeft <= r.fLeft && fTop <= r.fTop &&
fRight >= r.fRight && fBottom >= r.fBottom;
}
/** Return true if this rectangle contains the specified rectangle.
For speed, this method does not check if either this or the specified
rectangles are empty, and if either is, its return value is undefined.
In the debugging build however, we assert that both this and the
specified rectangles are non-empty.
*/
bool containsNoEmptyCheck(int32_t left, int32_t top,
int32_t right, int32_t bottom) const {
SkASSERT(fLeft < fRight && fTop < fBottom);
SkASSERT(left < right && top < bottom);
return fLeft <= left && fTop <= top &&
fRight >= right && fBottom >= bottom;
}
bool containsNoEmptyCheck(const SkIRect& r) const {
return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
/** If r intersects this rectangle, return true and set this rectangle to that
intersection, otherwise return false and do not change this rectangle.
If either rectangle is empty, do nothing and return false.
*/
bool intersect(const SkIRect& r) {
SkASSERT(&r);
return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
/** If rectangles a and b intersect, return true and set this rectangle to
that intersection, otherwise return false and do not change this
rectangle. If either rectangle is empty, do nothing and return false.
*/
bool intersect(const SkIRect& a, const SkIRect& b) {
SkASSERT(&a && &b);
if (!a.isEmpty() && !b.isEmpty() &&
a.fLeft < b.fRight && b.fLeft < a.fRight &&
a.fTop < b.fBottom && b.fTop < a.fBottom) {
fLeft = SkMax32(a.fLeft, b.fLeft);
fTop = SkMax32(a.fTop, b.fTop);
fRight = SkMin32(a.fRight, b.fRight);
fBottom = SkMin32(a.fBottom, b.fBottom);
return true;
}
return false;
}
/** If rectangles a and b intersect, return true and set this rectangle to
that intersection, otherwise return false and do not change this
rectangle. For speed, no check to see if a or b are empty is performed.
If either is, then the return result is undefined. In the debug build,
we assert that both rectangles are non-empty.
*/
bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
SkASSERT(&a && &b);
SkASSERT(!a.isEmpty() && !b.isEmpty());
if (a.fLeft < b.fRight && b.fLeft < a.fRight &&
a.fTop < b.fBottom && b.fTop < a.fBottom) {
fLeft = SkMax32(a.fLeft, b.fLeft);
fTop = SkMax32(a.fTop, b.fTop);
fRight = SkMin32(a.fRight, b.fRight);
fBottom = SkMin32(a.fBottom, b.fBottom);
return true;
}
return false;
}
/** If the rectangle specified by left,top,right,bottom intersects this rectangle,
return true and set this rectangle to that intersection,
otherwise return false and do not change this rectangle.
If either rectangle is empty, do nothing and return false.
*/
bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) {
if (left < right && top < bottom && !this->isEmpty() &&
fLeft < right && left < fRight && fTop < bottom && top < fBottom) {
if (fLeft < left) fLeft = left;
if (fTop < top) fTop = top;
if (fRight > right) fRight = right;
if (fBottom > bottom) fBottom = bottom;
return true;
}
return false;
}
/** Returns true if a and b are not empty, and they intersect
*/
static bool Intersects(const SkIRect& a, const SkIRect& b) {
return !a.isEmpty() && !b.isEmpty() && // check for empties
a.fLeft < b.fRight && b.fLeft < a.fRight &&
a.fTop < b.fBottom && b.fTop < a.fBottom;
}
/**
* Returns true if a and b intersect. debug-asserts that neither are empty.
*/
static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
SkASSERT(!a.isEmpty());
SkASSERT(!b.isEmpty());
return a.fLeft < b.fRight && b.fLeft < a.fRight &&
a.fTop < b.fBottom && b.fTop < a.fBottom;
}
/** Update this rectangle to enclose itself and the specified rectangle.
If this rectangle is empty, just set it to the specified rectangle. If the specified
rectangle is empty, do nothing.
*/
void join(int32_t left, int32_t top, int32_t right, int32_t bottom);
/** Update this rectangle to enclose itself and the specified rectangle.
If this rectangle is empty, just set it to the specified rectangle. If the specified
rectangle is empty, do nothing.
*/
void join(const SkIRect& r) {
this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
/** Swap top/bottom or left/right if there are flipped.
This can be called if the edges are computed separately,
and may have crossed over each other.
When this returns, left <= right && top <= bottom
*/
void sort();
static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() {
static const SkIRect gEmpty = { 0, 0, 0, 0 };
return gEmpty;
}
};
/** \struct SkRect
*/
struct SK_API SkRect {
SkScalar fLeft, fTop, fRight, fBottom;
static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() {
SkRect r;
r.setEmpty();
return r;
}
static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) {
SkRect r;
r.set(0, 0, w, h);
return r;
}
static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) {
SkRect r;
r.set(0, 0, size.width(), size.height());
return r;
}
static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
SkRect rect;
rect.set(l, t, r, b);
return rect;
}
static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) {
SkRect r;
r.set(x, y, x + w, y + h);
return r;
}
// DEPRECATED: call Make(r)
static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) {
SkRect r;
r.set(SkIntToScalar(irect.fLeft),
SkIntToScalar(irect.fTop),
SkIntToScalar(irect.fRight),
SkIntToScalar(irect.fBottom));
return r;
}
static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) {
SkRect r;
r.set(SkIntToScalar(irect.fLeft),
SkIntToScalar(irect.fTop),
SkIntToScalar(irect.fRight),
SkIntToScalar(irect.fBottom));
return r;
}
/**
* Return true if the rectangle's width or height are <= 0
*/
bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
/**
* Returns true iff all values in the rect are finite. If any are
* infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this
* returns false.
*/
bool isFinite() const {
#ifdef SK_SCALAR_IS_FLOAT
float accum = 0;
accum *= fLeft;
accum *= fTop;
accum *= fRight;
accum *= fBottom;
// accum is either NaN or it is finite (zero).
SkASSERT(0 == accum || !(accum == accum));
// value==value will be true iff value is not NaN
// TODO: is it faster to say !accum or accum==accum?
return accum == accum;
#else
// use bit-or for speed, since we don't care about short-circuting the
// tests, and we expect the common case will be that we need to check all.
int isNaN = (SK_FixedNaN == fLeft) | (SK_FixedNaN == fTop) |
(SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom);
return !isNaN;
#endif
}
SkScalar x() const { return fLeft; }
SkScalar y() const { return fTop; }
SkScalar left() const { return fLeft; }
SkScalar top() const { return fTop; }
SkScalar right() const { return fRight; }
SkScalar bottom() const { return fBottom; }
SkScalar width() const { return fRight - fLeft; }
SkScalar height() const { return fBottom - fTop; }
SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); }
SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); }
friend bool operator==(const SkRect& a, const SkRect& b) {
return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
}
friend bool operator!=(const SkRect& a, const SkRect& b) {
return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
}
/** return the 4 points that enclose the rectangle
*/
void toQuad(SkPoint quad[4]) const;
/** Set this rectangle to the empty rectangle (0,0,0,0)
*/
void setEmpty() { memset(this, 0, sizeof(*this)); }
void set(const SkIRect& src) {
fLeft = SkIntToScalar(src.fLeft);
fTop = SkIntToScalar(src.fTop);
fRight = SkIntToScalar(src.fRight);
fBottom = SkIntToScalar(src.fBottom);
}
void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
fLeft = left;
fTop = top;
fRight = right;
fBottom = bottom;
}
// alias for set(l, t, r, b)
void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
this->set(left, top, right, bottom);
}
/** Initialize the rect with the 4 specified integers. The routine handles
converting them to scalars (by calling SkIntToScalar)
*/
void iset(int left, int top, int right, int bottom) {
fLeft = SkIntToScalar(left);
fTop = SkIntToScalar(top);
fRight = SkIntToScalar(right);
fBottom = SkIntToScalar(bottom);
}
/**
* Set this rectangle to be left/top at 0,0, and have the specified width
* and height (automatically converted to SkScalar).
*/
void isetWH(int width, int height) {
fLeft = fTop = 0;
fRight = SkIntToScalar(width);
fBottom = SkIntToScalar(height);
}
/** Set this rectangle to be the bounds of the array of points.
If the array is empty (count == 0), then set this rectangle
to the empty rectangle (0,0,0,0)
*/
void set(const SkPoint pts[], int count) {
// set() had been checking for non-finite values, so keep that behavior
// for now. Now that we have setBoundsCheck(), we may decide to make
// set() be simpler/faster, and not check for those.
(void)this->setBoundsCheck(pts, count);
}
// alias for set(pts, count)
void setBounds(const SkPoint pts[], int count) {
(void)this->setBoundsCheck(pts, count);
}
/**
* Compute the bounds of the array of points, and set this rect to that
* bounds and return true... unless a non-finite value is encountered,
* in which case this rect is set to empty and false is returned.
*/
bool setBoundsCheck(const SkPoint pts[], int count);
void set(const SkPoint& p0, const SkPoint& p1) {
fLeft = SkMinScalar(p0.fX, p1.fX);
fRight = SkMaxScalar(p0.fX, p1.fX);
fTop = SkMinScalar(p0.fY, p1.fY);
fBottom = SkMaxScalar(p0.fY, p1.fY);
}
void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) {
fLeft = x;
fTop = y;
fRight = x + width;
fBottom = y + height;
}
void setWH(SkScalar width, SkScalar height) {
fLeft = 0;
fTop = 0;
fRight = width;
fBottom = height;
}
/**
* Make the largest representable rectangle
*/
void setLargest() {
fLeft = fTop = SK_ScalarMin;
fRight = fBottom = SK_ScalarMax;
}
/**
* Make the largest representable rectangle, but inverted (e.g. fLeft will
* be max and right will be min).
*/
void setLargestInverted() {
fLeft = fTop = SK_ScalarMax;
fRight = fBottom = SK_ScalarMin;
}
/** Offset set the rectangle by adding dx to its left and right,
and adding dy to its top and bottom.
*/
void offset(SkScalar dx, SkScalar dy) {
fLeft += dx;
fTop += dy;
fRight += dx;
fBottom += dy;
}
void offset(const SkPoint& delta) {
this->offset(delta.fX, delta.fY);
}
/**
* Offset this rect such its new x() and y() will equal newX and newY.
*/
void offsetTo(SkScalar newX, SkScalar newY) {
fRight += newX - fLeft;
fBottom += newY - fTop;
fLeft = newX;
fTop = newY;
}
/** Inset the rectangle by (dx,dy). If dx is positive, then the sides are
moved inwards, making the rectangle narrower. If dx is negative, then
the sides are moved outwards, making the rectangle wider. The same holds
true for dy and the top and bottom.
*/
void inset(SkScalar dx, SkScalar dy) {
fLeft += dx;
fTop += dy;
fRight -= dx;
fBottom -= dy;
}
/** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
moved outwards, making the rectangle wider. If dx is negative, then the
sides are moved inwards, making the rectangle narrower. The same holds
true for dy and the top and bottom.
*/
void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); }
/** If this rectangle intersects r, return true and set this rectangle to that
intersection, otherwise return false and do not change this rectangle.
If either rectangle is empty, do nothing and return false.
*/
bool intersect(const SkRect& r);
/** If this rectangle intersects the rectangle specified by left, top, right, bottom,
return true and set this rectangle to that intersection, otherwise return false
and do not change this rectangle.
If either rectangle is empty, do nothing and return false.
*/
bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
/**
* Return true if this rectangle is not empty, and the specified sides of
* a rectangle are not empty, and they intersect.
*/
bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const {
return // first check that both are not empty
left < right && top < bottom &&
fLeft < fRight && fTop < fBottom &&
// now check for intersection
fLeft < right && left < fRight &&
fTop < bottom && top < fBottom;
}
/** If rectangles a and b intersect, return true and set this rectangle to
* that intersection, otherwise return false and do not change this
* rectangle. If either rectangle is empty, do nothing and return false.
*/
bool intersect(const SkRect& a, const SkRect& b);
/**
* Return true if rectangles a and b are not empty and intersect.
*/
static bool Intersects(const SkRect& a, const SkRect& b) {
return !a.isEmpty() && !b.isEmpty() &&
a.fLeft < b.fRight && b.fLeft < a.fRight &&
a.fTop < b.fBottom && b.fTop < a.fBottom;
}
/**
* Update this rectangle to enclose itself and the specified rectangle.
* If this rectangle is empty, just set it to the specified rectangle.
* If the specified rectangle is empty, do nothing.
*/
void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
/** Update this rectangle to enclose itself and the specified rectangle.
If this rectangle is empty, just set it to the specified rectangle. If the specified
rectangle is empty, do nothing.
*/
void join(const SkRect& r) {
this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
// alias for join()
void growToInclude(const SkRect& r) { this->join(r); }
/**
* Grow the rect to include the specified (x,y). After this call, the
* following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom.
*
* This is close, but not quite the same contract as contains(), since
* contains() treats the left and top different from the right and bottom.
* contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note
* that contains(x,y) always returns false if the rect is empty.
*/
void growToInclude(SkScalar x, SkScalar y) {
fLeft = SkMinScalar(x, fLeft);
fRight = SkMaxScalar(x, fRight);
fTop = SkMinScalar(y, fTop);
fBottom = SkMaxScalar(y, fBottom);
}
/**
* Returns true if (p.fX,p.fY) is inside the rectangle, and the rectangle
* is not empty.
*
* Contains treats the left and top differently from the right and bottom.
* The left and top coordinates of the rectangle are themselves considered
* to be inside, while the right and bottom are not. Thus for the rectangle
* {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not.
*/
bool contains(const SkPoint& p) const {
return !this->isEmpty() &&
fLeft <= p.fX && p.fX < fRight && fTop <= p.fY && p.fY < fBottom;
}
/**
* Returns true if (x,y) is inside the rectangle, and the rectangle
* is not empty.
*
* Contains treats the left and top differently from the right and bottom.
* The left and top coordinates of the rectangle are themselves considered
* to be inside, while the right and bottom are not. Thus for the rectangle
* {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not.
*/
bool contains(SkScalar x, SkScalar y) const {
return !this->isEmpty() &&
fLeft <= x && x < fRight && fTop <= y && y < fBottom;
}
/**
* Return true if this rectangle contains r, and if both rectangles are
* not empty.
*/
bool contains(const SkRect& r) const {
return !r.isEmpty() && !this->isEmpty() &&
fLeft <= r.fLeft && fTop <= r.fTop &&
fRight >= r.fRight && fBottom >= r.fBottom;
}
/**
* Set the dst rectangle by rounding this rectangle's coordinates to their
* nearest integer values using SkScalarRound.
*/
void round(SkIRect* dst) const {
SkASSERT(dst);
dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom));
}
/**
* Set the dst rectangle by rounding "out" this rectangle, choosing the
* SkScalarFloor of top and left, and the SkScalarCeil of right and bottom.
*/
void roundOut(SkIRect* dst) const {
SkASSERT(dst);
dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom));
}
/**
* Expand this rectangle by rounding its coordinates "out", choosing the
* floor of top and left, and the ceil of right and bottom. If this rect
* is already on integer coordinates, then it will be unchanged.
*/
void roundOut() {
this->set(SkScalarFloorToScalar(fLeft),
SkScalarFloorToScalar(fTop),
SkScalarCeilToScalar(fRight),
SkScalarCeilToScalar(fBottom));
}
/**
* Set the dst rectangle by rounding "in" this rectangle, choosing the
* ceil of top and left, and the floor of right and bottom. This does *not*
* call sort(), so it is possible that the resulting rect is inverted...
* e.g. left >= right or top >= bottom. Call isEmpty() to detect that.
*/
void roundIn(SkIRect* dst) const {
SkASSERT(dst);
dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop),
SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom));
}
/**
* Swap top/bottom or left/right if there are flipped (i.e. if width()
* or height() would have returned a negative value.) This should be called
* if the edges are computed separately, and may have crossed over each
* other. When this returns, left <= right && top <= bottom
*/
void sort();
/**
* cast-safe way to treat the rect as an array of (4) SkScalars.
*/
const SkScalar* asScalars() const { return &fLeft; }
};
#endif
|