aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkPixmap.h
blob: 3688298ac1dd508ccf1ce6b746477473d3ea670f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkPixmap_DEFINED
#define SkPixmap_DEFINED

#include "SkColor.h"
#include "SkFilterQuality.h"
#include "SkImageInfo.h"

class SkData;
struct SkMask;

/**
 *  Pairs SkImageInfo with actual pixels and rowbytes. This class does not try to manage the
 *  lifetime of the pixel memory (nor the colortable if provided).
 */
class SK_API SkPixmap {
public:
    SkPixmap()
        : fPixels(nullptr), fRowBytes(0), fInfo(SkImageInfo::MakeUnknown(0, 0))
    {}

    SkPixmap(const SkImageInfo& info, const void* addr, size_t rowBytes)
        : fPixels(addr), fRowBytes(rowBytes), fInfo(info)
    {}

    void reset();
    void reset(const SkImageInfo& info, const void* addr, size_t rowBytes);

    // overrides the colorspace in the SkImageInfo of the pixmap
    void setColorSpace(sk_sp<SkColorSpace> colorSpace);

    /**
     *  If supported, set this pixmap to point to the pixels in the specified mask and return true.
     *  On failure, return false and set this pixmap to empty.
     */
    bool SK_WARN_UNUSED_RESULT reset(const SkMask& mask);

    /**
     *  Computes the intersection of area and this pixmap. If that intersection is non-empty,
     *  set subset to that intersection and return true.
     *
     *  On failure, return false and ignore the subset parameter.
     */
    bool SK_WARN_UNUSED_RESULT extractSubset(SkPixmap* subset, const SkIRect& area) const;

    const SkImageInfo& info() const { return fInfo; }
    size_t rowBytes() const { return fRowBytes; }
    const void* addr() const { return fPixels; }

    int width() const { return fInfo.width(); }
    int height() const { return fInfo.height(); }
    SkColorType colorType() const { return fInfo.colorType(); }
    SkAlphaType alphaType() const { return fInfo.alphaType(); }
    SkColorSpace* colorSpace() const { return fInfo.colorSpace(); }
    bool isOpaque() const { return fInfo.isOpaque(); }

    SkIRect bounds() const { return SkIRect::MakeWH(this->width(), this->height()); }

    /**
     *  Return the rowbytes expressed as a number of pixels (like width and height).
     */
    int rowBytesAsPixels() const { return int(fRowBytes >> this->shiftPerPixel()); }

    /**
     *  Return the shift amount per pixel (i.e. 0 for 1-byte per pixel, 1 for 2-bytes per pixel
     *  colortypes, 2 for 4-bytes per pixel colortypes). Return 0 for kUnknown_SkColorType.
     */
    int shiftPerPixel() const { return fInfo.shiftPerPixel(); }

    uint64_t getSize64() const { return sk_64_mul(fInfo.height(), fRowBytes); }
    uint64_t getSafeSize64() const { return fInfo.getSafeSize64(fRowBytes); }
    size_t getSafeSize() const { return fInfo.getSafeSize(fRowBytes); }

    /**
     *  This will brute-force return true if all of the pixels in the pixmap
     *  are opaque. If there are no pixels, or encounters an error, returns false.
     */
    bool computeIsOpaque() const;

    /**
     *  Converts the pixel at the specified coordinate to an unpremultiplied
     *  SkColor. Note: this ignores any SkColorSpace information, and may return
     *  lower precision data than is actually in the pixel. Alpha only
     *  colortypes (e.g. kAlpha_8_SkColorType) return black with the appropriate
     *  alpha set.  The value is undefined for kUnknown_SkColorType or if x or y
     *  are out of bounds, or if the pixtap does not have any pixels.
     */
    SkColor getColor(int x, int y) const;

    const void* addr(int x, int y) const {
        return (const char*)fPixels + fInfo.computeOffset(x, y, fRowBytes);
    }
    const uint8_t* addr8() const {
        SkASSERT(1 == SkColorTypeBytesPerPixel(fInfo.colorType()));
        return reinterpret_cast<const uint8_t*>(fPixels);
    }
    const uint16_t* addr16() const {
        SkASSERT(2 == SkColorTypeBytesPerPixel(fInfo.colorType()));
        return reinterpret_cast<const uint16_t*>(fPixels);
    }
    const uint32_t* addr32() const {
        SkASSERT(4 == SkColorTypeBytesPerPixel(fInfo.colorType()));
        return reinterpret_cast<const uint32_t*>(fPixels);
    }
    const uint64_t* addr64() const {
        SkASSERT(8 == SkColorTypeBytesPerPixel(fInfo.colorType()));
        return reinterpret_cast<const uint64_t*>(fPixels);
    }
    const uint16_t* addrF16() const {
        SkASSERT(8 == SkColorTypeBytesPerPixel(fInfo.colorType()));
        SkASSERT(kRGBA_F16_SkColorType == fInfo.colorType());
        return reinterpret_cast<const uint16_t*>(fPixels);
    }

    // Offset by the specified x,y coordinates

    const uint8_t* addr8(int x, int y) const {
        SkASSERT((unsigned)x < (unsigned)fInfo.width());
        SkASSERT((unsigned)y < (unsigned)fInfo.height());
        return (const uint8_t*)((const char*)this->addr8() + y * fRowBytes + (x << 0));
    }
    const uint16_t* addr16(int x, int y) const {
        SkASSERT((unsigned)x < (unsigned)fInfo.width());
        SkASSERT((unsigned)y < (unsigned)fInfo.height());
        return (const uint16_t*)((const char*)this->addr16() + y * fRowBytes + (x << 1));
    }
    const uint32_t* addr32(int x, int y) const {
        SkASSERT((unsigned)x < (unsigned)fInfo.width());
        SkASSERT((unsigned)y < (unsigned)fInfo.height());
        return (const uint32_t*)((const char*)this->addr32() + y * fRowBytes + (x << 2));
    }
    const uint64_t* addr64(int x, int y) const {
        SkASSERT((unsigned)x < (unsigned)fInfo.width());
        SkASSERT((unsigned)y < (unsigned)fInfo.height());
        return (const uint64_t*)((const char*)this->addr64() + y * fRowBytes + (x << 3));
    }
    const uint16_t* addrF16(int x, int y) const {
        SkASSERT(kRGBA_F16_SkColorType == fInfo.colorType());
        return reinterpret_cast<const uint16_t*>(this->addr64(x, y));
    }

    // Writable versions

    void* writable_addr() const { return const_cast<void*>(fPixels); }
    void* writable_addr(int x, int y) const {
        return const_cast<void*>(this->addr(x, y));
    }
    uint8_t* writable_addr8(int x, int y) const {
        return const_cast<uint8_t*>(this->addr8(x, y));
    }
    uint16_t* writable_addr16(int x, int y) const {
        return const_cast<uint16_t*>(this->addr16(x, y));
    }
    uint32_t* writable_addr32(int x, int y) const {
        return const_cast<uint32_t*>(this->addr32(x, y));
    }
    uint64_t* writable_addr64(int x, int y) const {
        return const_cast<uint64_t*>(this->addr64(x, y));
    }
    uint16_t* writable_addrF16(int x, int y) const {
        return reinterpret_cast<uint16_t*>(writable_addr64(x, y));
    }

    // copy methods

    bool readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
                    int srcX, int srcY, SkTransferFunctionBehavior behavior) const;
    bool readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes) const {
        return this->readPixels(dstInfo, dstPixels, dstRowBytes, 0, 0);
    }
    bool readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, int srcX,
                    int srcY) const {
        return this->readPixels(dstInfo, dstPixels, dstRowBytes, srcX, srcY,
                                SkTransferFunctionBehavior::kRespect);
    }
    bool readPixels(const SkPixmap& dst, int srcX, int srcY) const {
        return this->readPixels(dst.info(), dst.writable_addr(), dst.rowBytes(), srcX, srcY);
    }
    bool readPixels(const SkPixmap& dst) const {
        return this->readPixels(dst.info(), dst.writable_addr(), dst.rowBytes(), 0, 0);
    }

    /**
     *  Copy the pixels from this pixmap into the dst pixmap, converting as needed into dst's
     *  colortype/alphatype. If the conversion cannot be performed, false is returned.
     *
     *  If dst's dimensions differ from the src dimension, the image will be scaled, applying the
     *  specified filter-quality.
     */
    bool scalePixels(const SkPixmap& dst, SkFilterQuality filterQuality) const;

    /**
     *  Returns true if pixels were written to (e.g. if colorType is kUnknown_SkColorType, this
     *  will return false). If subset does not intersect the bounds of this pixmap, returns false.
     */
    bool erase(SkColor color, const SkIRect& subset) const;

    bool erase(SkColor color) const { return this->erase(color, this->bounds()); }
    bool erase(const SkColor4f& color, const SkIRect* subset = nullptr) const;

private:
    const void*     fPixels;
    size_t          fRowBytes;
    SkImageInfo     fInfo;
};

#endif