aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkPath.h
blob: 9906827ba88575ab8ecbce0c15169ff1c4a7c0de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

/* Generated by tools/bookmaker from include/core/SkPath.h and docs/SkPath_Reference.bmh
   on 2018-06-08 11:48:28. Additional documentation and examples can be found at:
   https://skia.org/user/api/SkPath_Reference

   You may edit either file directly. Structural changes to public interfaces require
   editing both files. After editing docs/SkPath_Reference.bmh, run:
       bookmaker -b docs -i include/core/SkPath.h -p
   to create an updated version of this file.
 */

#ifndef SkPath_DEFINED
#define SkPath_DEFINED

#include "SkMatrix.h"
#include "../private/SkPathRef.h"
#include "../private/SkTo.h"

class SkAutoPathBoundsUpdate;
class SkData;
class SkRRect;
class SkWStream;

/** \class SkPath
    SkPath contain geometry. SkPath may be empty, or contain one or more verbs that
    outline a figure. SkPath always starts with a move verb to a Cartesian_Coordinate,
    and may be followed by additional verbs that add lines or curves.
    Adding a close verb makes the geometry into a continuous loop, a closed contour.
    SkPath may contain any number of contours, each beginning with a move verb.

    SkPath contours may contain only a move verb, or may also contain lines,
    quadratic beziers, conics, and cubic beziers. SkPath contours may be open or
    closed.

    When used to draw a filled area, SkPath describes whether the fill is inside or
    outside the geometry. SkPath also describes the winding rule used to fill
    overlapping contours.

    Internally, SkPath lazily computes metrics likes bounds and convexity. Call
    SkPath::updateBoundsCache to make SkPath thread safe.
*/
class SK_API SkPath {
public:

    /** \enum SkPath::Direction
        Direction describes whether contour is clockwise or counterclockwise.
        When SkPath contains multiple overlapping contours, Direction together with
        FillType determines whether overlaps are filled or form holes.

        Direction also determines how contour is measured. For instance, dashing
        measures along SkPath to determine where to start and stop stroke; Direction
        will change dashed results as it steps clockwise or counterclockwise.

        Closed contours like SkRect, SkRRect, circle, and oval added with
        kCW_Direction travel clockwise; the same added with kCCW_Direction
        travel counterclockwise.
    */
    enum Direction {
        kCW_Direction,  //!< contour travels clockwise
        kCCW_Direction, //!< contour travels counterclockwise
    };

    /** By default, SkPath has no verbs, no SkPoint, and no weights.
        SkPath::FillType is set to kWinding_FillType.

        @return  empty SkPath
    */
    SkPath();

    /** Copy constructor makes two paths identical by value. Internally, path and
        the returned result share pointer values. The underlying verb array, SkPoint array
        and weights are copied when modified.

        Creating a SkPath copy is very efficient and never allocates memory.
        SkPath are always copied by value from the interface; the underlying shared
        pointers are not exposed.

        @param path  SkPath to copy by value
        @return      copy of SkPath
    */
    SkPath(const SkPath& path);

    /** Releases ownership of any shared data and deletes data if SkPath is sole owner.
    */
    ~SkPath();

    /** SkPath assignment makes two paths identical by value. Internally, assignment
        shares pointer values. The underlying verb array, SkPoint array and weights
        are copied when modified.

        Copying SkPath by assignment is very efficient and never allocates memory.
        SkPath are always copied by value from the interface; the underlying shared
        pointers are not exposed.

        @param path  verb array, SkPoint array, weights, and SkPath::FillType to copy
        @return      SkPath copied by value
    */
    SkPath& operator=(const SkPath& path);

    /** Compares a and b; returns true if SkPath::FillType, verb array, SkPoint array, and weights
        are equivalent.

        @param a  SkPath to compare
        @param b  SkPath to compare
        @return   true if SkPath pair are equivalent
    */
    friend SK_API bool operator==(const SkPath& a, const SkPath& b);

    /** Compares a and b; returns true if SkPath::FillType, verb array, SkPoint array, and weights
        are not equivalent.

        @param a  SkPath to compare
        @param b  SkPath to compare
        @return   true if SkPath pair are not equivalent
    */
    friend bool operator!=(const SkPath& a, const SkPath& b) {
        return !(a == b);
    }

    /** Return true if SkPath contain equal verbs and equal weights.
        If SkPath contain one or more conics, the weights must match.

        conicTo() may add different verbs depending on conic weight, so it is not
        trivial to interpolate a pair of SkPath containing conics with different
        conic weight values.

        @param compare  SkPath to compare
        @return         true if SkPath verb array and weights are equivalent
    */
    bool isInterpolatable(const SkPath& compare) const;

    /** Interpolate between SkPath with SkPoint array of equal size.
        Copy verb array and weights to out, and set out SkPoint array to a weighted
        average of this SkPoint array and ending SkPoint array, using the formula: (Path Point * weight) + ending Point * (1 - weight).

        weight is most useful when between zero (ending SkPoint array) and
        one (this Point_Array); will work with values outside of this
        range.

        interpolate() returns false and leaves out unchanged if SkPoint array is not
        the same size as ending SkPoint array. Call isInterpolatable() to check SkPath
        compatibility prior to calling interpolate().

        @param ending  SkPoint array averaged with this SkPoint array
        @param weight  contribution of this SkPoint array, and
                       one minus contribution of ending SkPoint array
        @param out     SkPath replaced by interpolated averages
        @return        true if SkPath contain same number of SkPoint
    */
    bool interpolate(const SkPath& ending, SkScalar weight, SkPath* out) const;

#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
    /** To be deprecated soon.
        Only valid for Android framework.
    */
    bool unique() const { return fPathRef->unique(); }
#endif

    /** \enum SkPath::FillType
        FillType selects the rule used to fill SkPath. SkPath set to kWinding_FillType
        fills if the sum of contour edges is not zero, where clockwise edges add one, and
        counterclockwise edges subtract one. SkPath set to kEvenOdd_FillType fills if the
        number of contour edges is odd. Each FillType has an inverse variant that
        reverses the rule:
        kInverseWinding_FillType fills where the sum of contour edges is zero;
        kInverseEvenOdd_FillType fills where the number of contour edges is even.
    */
    enum FillType {
        kWinding_FillType,        //!< is enclosed by a non-zero sum of contour directions
        kEvenOdd_FillType,        //!< is enclosed by an odd number of contours
        kInverseWinding_FillType, //!< is enclosed by a zero sum of contour directions
        kInverseEvenOdd_FillType, //!< is enclosed by an even number of contours
    };

    /** Returns FillType, the rule used to fill SkPath. FillType of a new SkPath is
        kWinding_FillType.

        @return  one of: kWinding_FillType, kEvenOdd_FillType,  kInverseWinding_FillType,
                 kInverseEvenOdd_FillType
    */
    FillType getFillType() const { return (FillType)fFillType; }

    /** Sets FillType, the rule used to fill SkPath. While there is no check
        that ft is legal, values outside of FillType are not supported.

        @param ft  one of: kWinding_FillType, kEvenOdd_FillType,  kInverseWinding_FillType,
                   kInverseEvenOdd_FillType
    */
    void setFillType(FillType ft) {
        fFillType = SkToU8(ft);
    }

    /** Returns if FillType describes area outside SkPath geometry. The inverse fill area
        extends indefinitely.

        @return  true if FillType is kInverseWinding_FillType or kInverseEvenOdd_FillType
    */
    bool isInverseFillType() const { return IsInverseFillType((FillType)fFillType); }

    /** Replace FillType with its inverse. The inverse of FillType describes the area
        unmodified by the original FillType.
    */
    void toggleInverseFillType() {
        fFillType ^= 2;
    }

    /** \enum SkPath::Convexity
        SkPath is convex if it contains one contour and contour loops no more than
        360 degrees, and contour angles all have same Direction. Convex SkPath
        may have better performance and require fewer resources on GPU surface.

        SkPath is concave when either at least one Direction change is clockwise and
        another is counterclockwise, or the sum of the changes in Direction is not 360
        degrees.

        Initially SkPath Convexity is kUnknown_Convexity. SkPath Convexity is computed
        if needed by destination SkSurface.
    */
    enum Convexity : uint8_t {
        kUnknown_Convexity, //!< indicates Convexity has not been determined
        kConvex_Convexity,  //!< one contour made of a simple geometry without indentations
        kConcave_Convexity, //!< more than one contour, or a geometry with indentations
    };

    /** Computes SkPath::Convexity if required, and returns stored value.
        SkPath::Convexity is computed if stored value is kUnknown_Convexity,
        or if SkPath has been altered since SkPath::Convexity was computed or set.

        @return  computed or stored SkPath::Convexity
    */
    Convexity getConvexity() const {
        for (Convexity convexity = fConvexity.load(); kUnknown_Convexity != convexity; ) {
            return convexity;
        }
        return this->internalGetConvexity();
    }

    /** Returns last computed SkPath::Convexity, or kUnknown_Convexity if
        SkPath has been altered since SkPath::Convexity was computed or set.

        @return  stored SkPath::Convexity
    */
    Convexity getConvexityOrUnknown() const { return (Convexity)fConvexity; }

    /** Stores convexity so that it is later returned by getConvexity() or getConvexityOrUnknown().
        convexity may differ from getConvexity(), although setting an incorrect value may
        cause incorrect or inefficient drawing.

        If convexity is kUnknown_Convexity: getConvexity() will
        compute SkPath::Convexity, and getConvexityOrUnknown() will return kUnknown_Convexity.

        If convexity is kConvex_Convexity or kConcave_Convexity, getConvexity()
        and getConvexityOrUnknown() will return convexity until the path is
        altered.

        @param convexity  one of: kUnknown_Convexity, kConvex_Convexity, or kConcave_Convexity
    */
    void setConvexity(Convexity convexity);

    /** Computes SkPath::Convexity if required, and returns true if value is kConvex_Convexity.
        If setConvexity() was called with kConvex_Convexity or kConcave_Convexity, and
        the path has not been altered, SkPath::Convexity is not recomputed.

        @return  true if SkPath::Convexity stored or computed is kConvex_Convexity
    */
    bool isConvex() const {
        return kConvex_Convexity == this->getConvexity();
    }

    /** Returns true if this path is recognized as an oval or circle.

        bounds receives bounds of oval.

        bounds is unmodified if oval is not found.

        @param bounds  storage for bounding SkRect of oval; may be nullptr
        @return        true if SkPath is recognized as an oval or circle
    */
    bool isOval(SkRect* bounds) const;

    /** Returns true if this path is recognized as a SkRRect (but not an oval/circle or rect).

        rrect receives bounds of SkRRect.

        rrect is unmodified if SkRRect is not found.

        @param rrect  storage for bounding SkRect of SkRRect; may be nullptr
        @return       true if SkPath contains only SkRRect
    */
    bool isRRect(SkRRect* rrect) const;

    /** Sets SkPath to its initial state.
        Removes verb array, SkPoint array, and weights, and sets FillType to kWinding_FillType.
        Internal storage associated with SkPath is released.
    */
    void reset();

    /** Sets SkPath to its initial state, preserving internal storage.
        Removes verb array, SkPoint array, and weights, and sets FillType to kWinding_FillType.
        Internal storage associated with SkPath is retained.

        Use rewind() instead of reset() if SkPath storage will be reused and performance
        is critical.
    */
    void rewind();

    /** Empty SkPath may have FillType but has no SkPoint, SkPath::Verb, or conic weight.
        SkPath() constructs empty SkPath; reset() and (rewind) make SkPath empty.

        @return  true if the path contains no SkPath::Verb array
    */
    bool isEmpty() const {
        SkDEBUGCODE(this->validate();)
        return 0 == fPathRef->countVerbs();
    }

    /** Contour is closed if SkPath SkPath::Verb array was last modified by close(). When stroked,
        closed contour draws SkPaint::Join instead of SkPaint::Cap at first and last SkPoint.

        @return  true if the last contour ends with a kClose_Verb
    */
    bool isLastContourClosed() const;

    /** Returns true for finite SkPoint array values between negative SK_ScalarMax and
        positive SK_ScalarMax. Returns false for any SkPoint array value of
        SK_ScalarInfinity, SK_ScalarNegativeInfinity, or SK_ScalarNaN.

        @return  true if all SkPoint values are finite
    */
    bool isFinite() const {
        SkDEBUGCODE(this->validate();)
        return fPathRef->isFinite();
    }

    /** Returns true if the path is volatile; it will not be altered or discarded
        by the caller after it is drawn. SkPath by default have volatile set false, allowing
        SkSurface to attach a cache of data which speeds repeated drawing. If true, SkSurface
        may not speed repeated drawing.

        @return  true if caller will alter SkPath after drawing
    */
    bool isVolatile() const {
        return SkToBool(fIsVolatile);
    }

    /** Specify whether SkPath is volatile; whether it will be altered or discarded
        by the caller after it is drawn. SkPath by default have volatile set false, allowing
        SkBaseDevice to attach a cache of data which speeds repeated drawing.

        Mark temporary paths, discarded or modified after use, as volatile
        to inform SkBaseDevice that the path need not be cached.

        Mark animating SkPath volatile to improve performance.
        Mark unchanging SkPath non-volatile to improve repeated rendering.

        raster surface SkPath draws are affected by volatile for some shadows.
        GPU surface SkPath draws are affected by volatile for some shadows and concave geometries.

        @param isVolatile  true if caller will alter SkPath after drawing
    */
    void setIsVolatile(bool isVolatile) {
        fIsVolatile = isVolatile;
    }

    /** Test if line between SkPoint pair is degenerate.
        Line with no length or that moves a very short distance is degenerate; it is
        treated as a point.

        exact changes the equality test. If true, returns true only if p1 equals p2.
        If false, returns true if p1 equals or nearly equals p2.

        @param p1     line start point
        @param p2     line end point
        @param exact  if false, allow nearly equals
        @return       true if line is degenerate; its length is effectively zero
    */
    static bool IsLineDegenerate(const SkPoint& p1, const SkPoint& p2, bool exact);

    /** Test if quad is degenerate.
        Quad with no length or that moves a very short distance is degenerate; it is
        treated as a point.

        @param p1     quad start point
        @param p2     quad control point
        @param p3     quad end point
        @param exact  if true, returns true only if p1, p2, and p3 are equal;
                      if false, returns true if p1, p2, and p3 are equal or nearly equal
        @return       true if quad is degenerate; its length is effectively zero
    */
    static bool IsQuadDegenerate(const SkPoint& p1, const SkPoint& p2,
                                 const SkPoint& p3, bool exact);

    /** Test if cubic is degenerate.
        Cubic with no length or that moves a very short distance is degenerate; it is
        treated as a point.

        @param p1     cubic start point
        @param p2     cubic control point 1
        @param p3     cubic control point 2
        @param p4     cubic end point
        @param exact  if true, returns true only if p1, p2, p3, and p4 are equal;
                      if false, returns true if p1, p2, p3, and p4 are equal or nearly equal
        @return       true if cubic is degenerate; its length is effectively zero
    */
    static bool IsCubicDegenerate(const SkPoint& p1, const SkPoint& p2,
                                  const SkPoint& p3, const SkPoint& p4, bool exact);

    /** Returns true if SkPath contains only one line;
        SkPath::Verb array has two entries: kMove_Verb, kLine_Verb.
        If SkPath contains one line and line is not nullptr, line is set to
        line start point and line end point.
        Returns false if SkPath is not one line; line is unaltered.

        @param line  storage for line. May be nullptr
        @return      true if SkPath contains exactly one line
    */
    bool isLine(SkPoint line[2]) const;

    /** Returns the number of points in SkPath.
        SkPoint count is initially zero.

        @return  SkPath SkPoint array length
    */
    int countPoints() const;

    /** Returns SkPoint at index in SkPoint array. Valid range for index is
        0 to countPoints() - 1.
        Returns (0, 0) if index is out of range.

        @param index  SkPoint array element selector
        @return       SkPoint array value or (0, 0)
    */
    SkPoint getPoint(int index) const;

    /** Returns number of points in SkPath. Up to max points are copied.
        points may be nullptr; then, max must be zero.
        If max is greater than number of points, excess points storage is unaltered.

        @param points  storage for SkPath SkPoint array. May be nullptr
        @param max     maximum to copy; must be greater than or equal to zero
        @return        SkPath SkPoint array length
    */
    int getPoints(SkPoint points[], int max) const;

    /** Returns the number of verbs: kMove_Verb, kLine_Verb, kQuad_Verb, kConic_Verb,
        kCubic_Verb, and kClose_Verb; added to SkPath.

        @return  length of verb array
    */
    int countVerbs() const;

    /** Returns the number of verbs in the path. Up to max verbs are copied. The
        verbs are copied as one byte per verb.

        @param verbs  storage for verbs, may be nullptr
        @param max    maximum number to copy into verbs
        @return       the actual number of verbs in the path
    */
    int getVerbs(uint8_t verbs[], int max) const;

    /** Exchanges the verb array, SkPoint array, weights, and SkPath::FillType with other.
        Cached state is also exchanged. swap() internally exchanges pointers, so
        it is lightweight and does not allocate memory.

        swap() usage has largely been replaced by operator=(const SkPath& path).
        SkPath do not copy their content on assignment until they are written to,
        making assignment as efficient as swap().

        @param other  SkPath exchanged by value
    */
    void swap(SkPath& other);

    /** Returns minimum and maximum x and y values of SkPoint array.
        Returns (0, 0, 0, 0) if SkPath contains no points. Returned bounds width and height may
        be larger or smaller than area affected when SkPath is drawn.

        SkRect returned includes all SkPoint added to SkPath, including SkPoint associated with
        kMove_Verb that define empty contours.

        @return  bounds of all SkPoint in SkPoint array
    */
    const SkRect& getBounds() const {
        return fPathRef->getBounds();
    }

    /** Update internal bounds so that subsequent calls to getBounds() are instantaneous.
        Unaltered copies of SkPath may also access cached bounds through getBounds().

        For now, identical to calling getBounds() and ignoring the returned value.

        Call to prepare SkPath subsequently drawn from multiple threads,
        to avoid a race condition where each draw separately computes the bounds.
    */
    void updateBoundsCache() const {
        // for now, just calling getBounds() is sufficient
        this->getBounds();
    }

    /** Returns minimum and maximum x and y values of the lines and curves in SkPath.
        Returns (0, 0, 0, 0) if SkPath contains no points.
        Returned bounds width and height may be larger or smaller than area affected
        when SkPath is drawn.

        Includes SkPoint associated with kMove_Verb that define empty
        contours.

        Behaves identically to getBounds() when SkPath contains
        only lines. If SkPath contains curves, computed bounds includes
        the maximum extent of the quad, conic, or cubic; is slower than getBounds();
        and unlike getBounds(), does not cache the result.

        @return  tight bounds of curves in SkPath
    */
    SkRect computeTightBounds() const;

    /** Returns true if rect is contained by SkPath.
        May return false when rect is contained by SkPath.

        For now, only returns true if SkPath has one contour and is convex.
        rect may share points and edges with SkPath and be contained.
        Returns true if rect is empty, that is, it has zero width or height; and
        the SkPoint or line described by rect is contained by SkPath.

        @param rect  SkRect, line, or SkPoint checked for containment
        @return      true if rect is contained
    */
    bool conservativelyContainsRect(const SkRect& rect) const;

    /** grows SkPath verb array and SkPoint array to contain extraPtCount additional SkPoint.
        May improve performance and use less memory by
        reducing the number and size of allocations when creating SkPath.

        @param extraPtCount  number of additional SkPoint to allocate
    */
    void incReserve(unsigned extraPtCount);

    /** Adds beginning of contour at SkPoint (x, y).

        @param x  x-coordinate of contour start
        @param y  y-coordinate of contour start
    */
    void moveTo(SkScalar x, SkScalar y);

    /** Adds beginning of contour at SkPoint p.

        @param p  contour start
    */
    void moveTo(const SkPoint& p) {
        this->moveTo(p.fX, p.fY);
    }

    /** Adds beginning of contour relative to last point.
        If SkPath is empty, starts contour at (dx, dy).
        Otherwise, start contour at last point offset by (dx, dy).
        Function name stands for "relative move to".

        @param dx  offset from last point x to contour start x
        @param dy  offset from last point y to contour start y
    */
    void rMoveTo(SkScalar dx, SkScalar dy);

    /** Adds line from last point to (x, y). If SkPath is empty, or last SkPath::Verb is
        kClose_Verb, last point is set to (0, 0) before adding line.

        lineTo() appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed.
        lineTo() then appends kLine_Verb to verb array and (x, y) to SkPoint array.

        @param x  end of added line in x
        @param y  end of added line in y
    */
    void lineTo(SkScalar x, SkScalar y);

    /** Adds line from last point to SkPoint p. If SkPath is empty, or last SkPath::Verb is
        kClose_Verb, last point is set to (0, 0) before adding line.

        lineTo() first appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed.
        lineTo() then appends kLine_Verb to verb array and SkPoint p to SkPoint array.

        @param p  end SkPoint of added line
    */
    void lineTo(const SkPoint& p) {
        this->lineTo(p.fX, p.fY);
    }

    /** Adds line from last point to vector (dx, dy). If SkPath is empty, or last SkPath::Verb is
        kClose_Verb, last point is set to (0, 0) before adding line.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed;
        then appends kLine_Verb to verb array and line end to SkPoint array.
        Line end is last point plus vector (dx, dy).
        Function name stands for "relative line to".

        @param dx  offset from last point x to line end x
        @param dy  offset from last point y to line end y
    */
    void rLineTo(SkScalar dx, SkScalar dy);

    /** Adds quad from last point towards (x1, y1), to (x2, y2).
        If SkPath is empty, or last SkPath::Verb is kClose_Verb, last point is set to (0, 0)
        before adding quad.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed;
        then appends kQuad_Verb to verb array; and (x1, y1), (x2, y2)
        to SkPoint array.

        @param x1  control SkPoint of quad in x
        @param y1  control SkPoint of quad in y
        @param x2  end SkPoint of quad in x
        @param y2  end SkPoint of quad in y
    */
    void quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2);

    /** Adds quad from last point towards SkPoint p1, to SkPoint p2.
        If SkPath is empty, or last SkPath::Verb is kClose_Verb, last point is set to (0, 0)
        before adding quad.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed;
        then appends kQuad_Verb to verb array; and SkPoint p1, p2
        to SkPoint array.

        @param p1  control SkPoint of added quad
        @param p2  end SkPoint of added quad
    */
    void quadTo(const SkPoint& p1, const SkPoint& p2) {
        this->quadTo(p1.fX, p1.fY, p2.fX, p2.fY);
    }

    /** Adds quad from last point towards vector (dx1, dy1), to vector (dx2, dy2).
        If SkPath is empty, or last SkPath::Verb
        is kClose_Verb, last point is set to (0, 0) before adding quad.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array,
        if needed; then appends kQuad_Verb to verb array; and appends quad
        control and quad end to SkPoint array.
        Quad control is last point plus vector (dx1, dy1).
        Quad end is last point plus vector (dx2, dy2).
        Function name stands for "relative quad to".

        @param dx1  offset from last point x to quad control x
        @param dy1  offset from last point x to quad control y
        @param dx2  offset from last point x to quad end x
        @param dy2  offset from last point x to quad end y
    */
    void rQuadTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2);

    /** Adds conic from last point towards (x1, y1), to (x2, y2), weighted by w.
        If SkPath is empty, or last SkPath::Verb is kClose_Verb, last point is set to (0, 0)
        before adding conic.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed.

        If w is finite and not one, appends kConic_Verb to verb array;
        and (x1, y1), (x2, y2) to SkPoint array; and w to conic weights.

        If w is one, appends kQuad_Verb to verb array, and
        (x1, y1), (x2, y2) to SkPoint array.

        If w is not finite, appends kLine_Verb twice to verb array, and
        (x1, y1), (x2, y2) to SkPoint array.

        @param x1  control SkPoint of conic in x
        @param y1  control SkPoint of conic in y
        @param x2  end SkPoint of conic in x
        @param y2  end SkPoint of conic in y
        @param w   weight of added conic
    */
    void conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
                 SkScalar w);

    /** Adds conic from last point towards SkPoint p1, to SkPoint p2, weighted by w.
        If SkPath is empty, or last SkPath::Verb is kClose_Verb, last point is set to (0, 0)
        before adding conic.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed.

        If w is finite and not one, appends kConic_Verb to verb array;
        and SkPoint p1, p2 to SkPoint array; and w to conic weights.

        If w is one, appends kQuad_Verb to verb array, and SkPoint p1, p2
        to SkPoint array.

        If w is not finite, appends kLine_Verb twice to verb array, and
        SkPoint p1, p2 to SkPoint array.

        @param p1  control SkPoint of added conic
        @param p2  end SkPoint of added conic
        @param w   weight of added conic
    */
    void conicTo(const SkPoint& p1, const SkPoint& p2, SkScalar w) {
        this->conicTo(p1.fX, p1.fY, p2.fX, p2.fY, w);
    }

    /** Adds conic from last point towards vector (dx1, dy1), to vector (dx2, dy2),
        weighted by w. If SkPath is empty, or last SkPath::Verb
        is kClose_Verb, last point is set to (0, 0) before adding conic.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array,
        if needed.

        If w is finite and not one, next appends kConic_Verb to verb array,
        and w is recorded as conic weight; otherwise, if w is one, appends
        kQuad_Verb to verb array; or if w is not finite, appends kLine_Verb
        twice to verb array.

        In all cases appends SkPoint control and end to SkPoint array.
        control is last point plus vector (dx1, dy1).
        end is last point plus vector (dx2, dy2).

        Function name stands for "relative conic to".

        @param dx1  offset from last point x to conic control x
        @param dy1  offset from last point x to conic control y
        @param dx2  offset from last point x to conic end x
        @param dy2  offset from last point x to conic end y
        @param w    weight of added conic
    */
    void rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2,
                  SkScalar w);

    /** Adds cubic from last point towards (x1, y1), then towards (x2, y2), ending at
        (x3, y3). If SkPath is empty, or last SkPath::Verb is kClose_Verb, last point is set to
        (0, 0) before adding cubic.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed;
        then appends kCubic_Verb to verb array; and (x1, y1), (x2, y2), (x3, y3)
        to SkPoint array.

        @param x1  first control SkPoint of cubic in x
        @param y1  first control SkPoint of cubic in y
        @param x2  second control SkPoint of cubic in x
        @param y2  second control SkPoint of cubic in y
        @param x3  end SkPoint of cubic in x
        @param y3  end SkPoint of cubic in y
    */
    void cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
                 SkScalar x3, SkScalar y3);

    /** Adds cubic from last point towards SkPoint p1, then towards SkPoint p2, ending at
        SkPoint p3. If SkPath is empty, or last SkPath::Verb is kClose_Verb, last point is set to
        (0, 0) before adding cubic.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array, if needed;
        then appends kCubic_Verb to verb array; and SkPoint p1, p2, p3
        to SkPoint array.

        @param p1  first control SkPoint of cubic
        @param p2  second control SkPoint of cubic
        @param p3  end SkPoint of cubic
    */
    void cubicTo(const SkPoint& p1, const SkPoint& p2, const SkPoint& p3) {
        this->cubicTo(p1.fX, p1.fY, p2.fX, p2.fY, p3.fX, p3.fY);
    }

    /** Adds cubic from last point towards vector (dx1, dy1), then towards
        vector (dx2, dy2), to vector (dx3, dy3).
        If SkPath is empty, or last SkPath::Verb
        is kClose_Verb, last point is set to (0, 0) before adding cubic.

        Appends kMove_Verb to verb array and (0, 0) to SkPoint array,
        if needed; then appends kCubic_Verb to verb array; and appends cubic
        control and cubic end to SkPoint array.
        Cubic control is last point plus vector (dx1, dy1).
        Cubic end is last point plus vector (dx2, dy2).
        Function name stands for "relative cubic to".

        @param x1  offset from last point x to first cubic control x
        @param y1  offset from last point x to first cubic control y
        @param x2  offset from last point x to second cubic control x
        @param y2  offset from last point x to second cubic control y
        @param x3  offset from last point x to cubic end x
        @param y3  offset from last point x to cubic end y
    */
    void rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
                  SkScalar x3, SkScalar y3);

    /** Append arc to SkPath. Arc added is part of ellipse
        bounded by oval, from startAngle through sweepAngle. Both startAngle and
        sweepAngle are measured in degrees, where zero degrees is aligned with the
        positive x-axis, and positive sweeps extends arc clockwise.

        arcTo() adds line connecting SkPath last SkPoint to initial arc SkPoint if forceMoveTo
        is false and SkPath is not empty. Otherwise, added contour begins with first point
        of arc. Angles greater than -360 and less than 360 are treated modulo 360.

        @param oval         bounds of ellipse containing arc
        @param startAngle   starting angle of arc in degrees
        @param sweepAngle   sweep, in degrees. Positive is clockwise; treated modulo 360
        @param forceMoveTo  true to start a new contour with arc
    */
    void arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo);

    /** Append arc to SkPath, after appending line if needed. Arc is implemented by conic
        weighted to describe part of circle. Arc is contained by tangent from
        last SkPath point (x0, y0) to (x1, y1), and tangent from (x1, y1) to (x2, y2). Arc
        is part of circle sized to radius, positioned so it touches both tangent lines.

        @param x1      x common to pair of tangents
        @param y1      y common to pair of tangents
        @param x2      x end of second tangent
        @param y2      y end of second tangent
        @param radius  distance from arc to circle center
    */
    void arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius);

    /** Append arc to SkPath, after appending line if needed. Arc is implemented by conic
        weighted to describe part of circle. Arc is contained by tangent from
        last SkPath point to p1, and tangent from p1 to p2. Arc
        is part of circle sized to radius, positioned so it touches both tangent lines.

        If last SkPath SkPoint does not start arc, arcTo() appends connecting line to SkPath.
        The length of vector from p1 to p2 does not affect arc.

        Arc sweep is always less than 180 degrees. If radius is zero, or if
        tangents are nearly parallel, arcTo() appends line from last SkPath SkPoint to p1.

        arcTo() appends at most one line and one conic.
        arcTo() implements the functionality of PostScript_Arct and HTML_Canvas_ArcTo.

        @param p1      SkPoint common to pair of tangents
        @param p2      end of second tangent
        @param radius  distance from arc to circle center
    */
    void arcTo(const SkPoint p1, const SkPoint p2, SkScalar radius) {
        this->arcTo(p1.fX, p1.fY, p2.fX, p2.fY, radius);
    }

    /** \enum SkPath::ArcSize
        Four oval parts with radii (rx, ry) start at last SkPath SkPoint and ends at (x, y).
        ArcSize and Direction select one of the four oval parts.
    */
    enum ArcSize {
        kSmall_ArcSize, //!< smaller of arc pair
        kLarge_ArcSize, //!< larger of arc pair
    };

    /** Append arc to SkPath. Arc is implemented by one or more conics weighted to
        describe part of oval with radii (rx, ry) rotated by xAxisRotate degrees. Arc
        curves from last SkPath SkPoint to (x, y), choosing one of four possible routes:
        clockwise or counterclockwise, and smaller or larger.

        Arc sweep is always less than 360 degrees. arcTo() appends line to (x, y) if
        either radii are zero, or if last SkPath SkPoint equals (x, y). arcTo() scales radii
        (rx, ry) to fit last SkPath SkPoint and (x, y) if both are greater than zero but
        too small.

        arcTo() appends up to four conic curves.
        arcTo() implements the functionality of svg arc, although SVG "sweep-flag" value
        is opposite the integer value of sweep; SVG "sweep-flag" uses 1 for clockwise,
        while kCW_Direction  cast to int is zero.

        @param rx           radius in x before x-axis rotation
        @param ry           radius in y before x-axis rotation
        @param xAxisRotate  x-axis rotation in degrees; positive values are clockwise
        @param largeArc     chooses smaller or larger arc
        @param sweep        chooses clockwise or counterclockwise arc
        @param x            end of arc
        @param y            end of arc
    */
    void arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
               Direction sweep, SkScalar x, SkScalar y);

    /** Append arc to SkPath. Arc is implemented by one or more conic weighted to describe part of oval
        with radii (r.fX, r.fY) rotated by xAxisRotate degrees. Arc curves from last SkPath SkPoint to
        (xy.fX, xy.fY), choosing one of four possible routes: clockwise or counterclockwise,
        and smaller or larger.

        Arc sweep is always less than 360 degrees. arcTo() appends line to xy if either radii are zero,
        or if last SkPath SkPoint equals (x, y). arcTo() scales radii r to fit last SkPath SkPoint and
        xy if both are greater than zero but too small to describe an arc.

        arcTo() appends up to four conic curves.
        arcTo() implements the functionality of svg arc, although SVG "sweep-flag" value is
        opposite the integer value of sweep; SVG "sweep-flag" uses 1 for clockwise, while
        kCW_Direction cast to int is zero.

        @param r            radii in x and y before x-axis rotation
        @param xAxisRotate  x-axis rotation in degrees; positive values are clockwise
        @param largeArc     chooses smaller or larger arc
        @param sweep        chooses clockwise or counterclockwise arc
        @param xy           end of arc
    */
    void arcTo(const SkPoint r, SkScalar xAxisRotate, ArcSize largeArc, Direction sweep,
               const SkPoint xy) {
        this->arcTo(r.fX, r.fY, xAxisRotate, largeArc, sweep, xy.fX, xy.fY);
    }

    /** Append arc to SkPath, relative to last SkPath SkPoint. Arc is implemented by one or
        more conic, weighted to describe part of oval with radii (rx, ry) rotated by
        xAxisRotate degrees. Arc curves from last SkPath SkPoint (x0, y0) to end SkPoint:
        (x0 + dx, y0 + dy), choosing one of four possible routes: clockwise or
        counterclockwise, and smaller or larger. If SkPath is empty, the start arc SkPoint
        is (0, 0).

        Arc sweep is always less than 360 degrees. arcTo() appends line to end SkPoint
        if either radii are zero, or if last SkPath SkPoint equals end SkPoint.
        arcTo() scales radii (rx, ry) to fit last SkPath SkPoint and end SkPoint if both are
        greater than zero but too small to describe an arc.

        arcTo() appends up to four conic curves.
        arcTo() implements the functionality of svg arc, although SVG "sweep-flag" value is
        opposite the integer value of sweep; SVG "sweep-flag" uses 1 for clockwise, while
        kCW_Direction cast to int is zero.

        @param rx           radius in x before x-axis rotation
        @param ry           radius in y before x-axis rotation
        @param xAxisRotate  x-axis rotation in degrees; positive values are clockwise
        @param largeArc     chooses smaller or larger arc
        @param sweep        chooses clockwise or counterclockwise arc
        @param dx           x offset end of arc from last SkPath SkPoint
        @param dy           y offset end of arc from last SkPath SkPoint
    */
    void rArcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
                Direction sweep, SkScalar dx, SkScalar dy);

    /** Append kClose_Verb to SkPath. A closed contour connects the first and last SkPoint
        with line, forming a continuous loop. Open and closed contour draw the same
        with SkPaint::kFill_Style. With SkPaint::kStroke_Style, open contour draws
        SkPaint::Cap at contour start and end; closed contour draws
        SkPaint::Join at contour start and end.

        close() has no effect if SkPath is empty or last SkPath SkPath::Verb is kClose_Verb.
    */
    void close();

    /** Returns true if fill is inverted and SkPath with fill represents area outside
        of its geometric bounds.

        @param fill  one of: kWinding_FillType, kEvenOdd_FillType,
                     kInverseWinding_FillType, kInverseEvenOdd_FillType
        @return      true if SkPath fills outside its bounds
    */
    static bool IsInverseFillType(FillType fill) {
        static_assert(0 == kWinding_FillType, "fill_type_mismatch");
        static_assert(1 == kEvenOdd_FillType, "fill_type_mismatch");
        static_assert(2 == kInverseWinding_FillType, "fill_type_mismatch");
        static_assert(3 == kInverseEvenOdd_FillType, "fill_type_mismatch");
        return (fill & 2) != 0;
    }

    /** Returns equivalent SkPath::FillType representing SkPath fill inside its bounds.
        .

        @param fill  one of: kWinding_FillType, kEvenOdd_FillType,
                     kInverseWinding_FillType, kInverseEvenOdd_FillType
        @return      fill, or kWinding_FillType or kEvenOdd_FillType if fill is inverted
    */
    static FillType ConvertToNonInverseFillType(FillType fill) {
        static_assert(0 == kWinding_FillType, "fill_type_mismatch");
        static_assert(1 == kEvenOdd_FillType, "fill_type_mismatch");
        static_assert(2 == kInverseWinding_FillType, "fill_type_mismatch");
        static_assert(3 == kInverseEvenOdd_FillType, "fill_type_mismatch");
        return (FillType)(fill & 1);
    }

    /** Approximates conic with quad array. Conic is constructed from start SkPoint p0,
        control SkPoint p1, end SkPoint p2, and weight w.
        Quad array is stored in pts; this storage is supplied by caller.
        Maximum quad count is 2 to the pow2.
        Every third point in array shares last SkPoint of previous quad and first SkPoint of
        next quad. Maximum pts storage size is given by: (1 + 2 * (1 << pow2)) * sizeof(SkPoint).

        Returns quad count used the approximation, which may be smaller
        than the number requested.

        conic weight determines the amount of influence conic control point has on the curve.
        w less than one represents an elliptical section. w greater than one represents
        a hyperbolic section. w equal to one represents a parabolic section.

        Two quad curves are sufficient to approximate an elliptical conic with a sweep
        of up to 90 degrees; in this case, set pow2 to one.

        @param p0    conic start SkPoint
        @param p1    conic control SkPoint
        @param p2    conic end SkPoint
        @param w     conic weight
        @param pts   storage for quad array
        @param pow2  quad count, as power of two, normally 0 to 5 (1 to 32 quad curves)
        @return      number of quad curves written to pts
    */
    static int ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
                                   SkScalar w, SkPoint pts[], int pow2);

    /** Returns true if SkPath is equivalent to SkRect when filled.
        If false: rect, isClosed, and direction are unchanged.
        If true: rect, isClosed, and direction are written to if not nullptr.

        rect may be smaller than the SkPath bounds. SkPath bounds may include kMove_Verb points
        that do not alter the area drawn by the returned rect.

        @param rect       storage for bounds of SkRect; may be nullptr
        @param isClosed   storage set to true if SkPath is closed; may be nullptr
        @param direction  storage set to SkRect direction; may be nullptr
        @return           true if SkPath contains SkRect
    */
    bool isRect(SkRect* rect, bool* isClosed = nullptr, Direction* direction = nullptr) const;

    /** Returns true if SkPath is equivalent to nested SkRect pair when filled.
        If false, rect and dirs are unchanged.
        If true, rect and dirs are written to if not nullptr:
        setting rect[0] to outer SkRect, and rect[1] to inner SkRect;
        setting dirs[0] to SkPath::Direction of outer SkRect, and dirs[1] to SkPath::Direction of inner
        SkRect.

        @param rect  storage for SkRect pair; may be nullptr
        @param dirs  storage for SkPath::Direction pair; may be nullptr
        @return      true if SkPath contains nested SkRect pair
    */
    bool isNestedFillRects(SkRect rect[2], Direction dirs[2] = nullptr) const;

    /** Add SkRect to SkPath, appending kMove_Verb, three kLine_Verb, and kClose_Verb,
        starting with top-left corner of SkRect; followed by top-right, bottom-right,
        and bottom-left if dir is kCW_Direction; or followed by bottom-left,
        bottom-right, and top-right if dir is kCCW_Direction.

        @param rect  SkRect to add as a closed contour
        @param dir   SkPath::Direction to wind added contour
    */
    void addRect(const SkRect& rect, Direction dir = kCW_Direction);

    /** Add SkRect to SkPath, appending kMove_Verb, three kLine_Verb, and kClose_Verb.
        If dir is kCW_Direction, SkRect corners are added clockwise; if dir is
        kCCW_Direction, SkRect corners are added counterclockwise.
        start determines the first corner added.

        @param rect   SkRect to add as a closed contour
        @param dir    SkPath::Direction to wind added contour
        @param start  initial corner of SkRect to add
    */
    void addRect(const SkRect& rect, Direction dir, unsigned start);

    /** Add SkRect (left, top, right, bottom) to SkPath,
        appending kMove_Verb, three kLine_Verb, and kClose_Verb,
        starting with top-left corner of SkRect; followed by top-right, bottom-right,
        and bottom-left if dir is kCW_Direction; or followed by bottom-left,
        bottom-right, and top-right if dir is kCCW_Direction.

        @param left    smaller x of SkRect
        @param top     smaller y of SkRect
        @param right   larger x of SkRect
        @param bottom  larger y of SkRect
        @param dir     SkPath::Direction to wind added contour
    */
    void addRect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom,
                 Direction dir = kCW_Direction);

    /** Add oval to path, appending kMove_Verb, four kConic_Verb, and kClose_Verb.
        Oval is upright ellipse bounded by SkRect oval with radii equal to half oval width
        and half oval height. Oval begins at (oval.fRight, oval.centerY()) and continues
        clockwise if dir is kCW_Direction, counterclockwise if dir is kCCW_Direction.

        @param oval  bounds of ellipse added
        @param dir   SkPath::Direction to wind ellipse
    */
    void addOval(const SkRect& oval, Direction dir = kCW_Direction);

    /** Add oval to SkPath, appending kMove_Verb, four kConic_Verb, and kClose_Verb.
        Oval is upright ellipse bounded by SkRect oval with radii equal to half oval width
        and half oval height. Oval begins at start and continues
        clockwise if dir is kCW_Direction, counterclockwise if dir is kCCW_Direction.

        @param oval   bounds of ellipse added
        @param dir    SkPath::Direction to wind ellipse
        @param start  index of initial point of ellipse
    */
    void addOval(const SkRect& oval, Direction dir, unsigned start);

    /** Add circle centered at (x, y) of size radius to SkPath, appending kMove_Verb,
        four kConic_Verb, and kClose_Verb. Circle begins at: (x + radius, y), continuing
        clockwise if dir is kCW_Direction, and counterclockwise if dir is kCCW_Direction.

        Has no effect if radius is zero or negative.

        @param x       center of circle
        @param y       center of circle
        @param radius  distance from center to edge
        @param dir     SkPath::Direction to wind circle
    */
    void addCircle(SkScalar x, SkScalar y, SkScalar radius,
                   Direction dir = kCW_Direction);

    /** Append arc to SkPath, as the start of new contour. Arc added is part of ellipse
        bounded by oval, from startAngle through sweepAngle. Both startAngle and
        sweepAngle are measured in degrees, where zero degrees is aligned with the
        positive x-axis, and positive sweeps extends arc clockwise.

        If sweepAngle <= -360, or sweepAngle >= 360; and startAngle modulo 90 is nearly
        zero, append oval instead of arc. Otherwise, sweepAngle values are treated
        modulo 360, and arc may or may not draw depending on numeric rounding.

        @param oval        bounds of ellipse containing arc
        @param startAngle  starting angle of arc in degrees
        @param sweepAngle  sweep, in degrees. Positive is clockwise; treated modulo 360
    */
    void addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle);

    /** Append SkRRect to SkPath, creating a new closed contour. SkRRect has bounds
        equal to rect; each corner is 90 degrees of an ellipse with radii (rx, ry). If
        dir is kCW_Direction, SkRRect starts at top-left of the lower-left corner and
        winds clockwise. If dir is kCCW_Direction, SkRRect starts at the bottom-left
        of the upper-left corner and winds counterclockwise.

        If either rx or ry is too large, rx and ry are scaled uniformly until the
        corners fit. If rx or ry is less than or equal to zero, addRoundRect() appends
        SkRect rect to SkPath.

        After appending, SkPath may be empty, or may contain: SkRect, oval, or RoundRect.

        @param rect  bounds of SkRRect
        @param rx    x-radius of rounded corners on the SkRRect
        @param ry    y-radius of rounded corners on the SkRRect
        @param dir   SkPath::Direction to wind SkRRect
    */
    void addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry,
                      Direction dir = kCW_Direction);

    /** Append SkRRect to SkPath, creating a new closed contour. SkRRect has bounds
        equal to rect; each corner is 90 degrees of an ellipse with radii from the
        array.

        @param rect   bounds of SkRRect
        @param radii  array of 8 SkScalar values, a radius pair for each corner
        @param dir    SkPath::Direction to wind SkRRect
    */
    void addRoundRect(const SkRect& rect, const SkScalar radii[],
                      Direction dir = kCW_Direction);

    /** Add rrect to SkPath, creating a new closed contour. If
        dir is kCW_Direction, rrect starts at top-left of the lower-left corner and
        winds clockwise. If dir is kCCW_Direction, rrect starts at the bottom-left
        of the upper-left corner and winds counterclockwise.

        After appending, SkPath may be empty, or may contain: SkRect, oval, or SkRRect.

        @param rrect  bounds and radii of rounded rectangle
        @param dir    SkPath::Direction to wind SkRRect
    */
    void addRRect(const SkRRect& rrect, Direction dir = kCW_Direction);

    /** Add rrect to SkPath, creating a new closed contour. If dir is kCW_Direction, rrect
        winds clockwise; if dir is kCCW_Direction, rrect winds counterclockwise.
        start determines the first point of rrect to add.

        @param rrect  bounds and radii of rounded rectangle
        @param dir    SkPath::Direction to wind SkRRect
        @param start  index of initial point of SkRRect
    */
    void addRRect(const SkRRect& rrect, Direction dir, unsigned start);

    /** Add contour created from line array, adding (count - 1) line segments.
        Contour added starts at pts[0], then adds a line for every additional SkPoint
        in pts array. If close is true,appends kClose_Verb to SkPath, connecting
        pts[count - 1] and pts[0].

        If count is zero, append kMove_Verb to path.
        Has no effect if count is less than one.

        @param pts    array of line sharing end and start SkPoint
        @param count  length of SkPoint array
        @param close  true to add line connecting contour end and start
    */
    void addPoly(const SkPoint pts[], int count, bool close);

    /** \enum SkPath::AddPathMode
        AddPathMode chooses how addPath() appends. Adding one SkPath to another can extend
        the last contour or start a new contour.
    */
    enum AddPathMode {
        kAppend_AddPathMode, //!< appended to destination unaltered
        kExtend_AddPathMode, //!< add line if prior contour is not closed
    };

    /** Append src to SkPath, offset by (dx, dy).

        If mode is kAppend_AddPathMode, src verb array, SkPoint array, and conic weights are
        added unaltered. If mode is kExtend_AddPathMode, add line before appending
        verbs, SkPoint, and conic weights.

        @param src   SkPath verbs, SkPoint, and conic weights to add
        @param dx    offset added to src SkPoint array x coordinates
        @param dy    offset added to src SkPoint array y coordinates
        @param mode  kAppend_AddPathMode or kExtend_AddPathMode
    */
    void addPath(const SkPath& src, SkScalar dx, SkScalar dy,
                 AddPathMode mode = kAppend_AddPathMode);

    /** Append src to SkPath.

        If mode is kAppend_AddPathMode, src verb array, SkPoint array, and conic weights are
        added unaltered. If mode is kExtend_AddPathMode, add line before appending
        verbs, SkPoint, and conic weights.

        @param src   SkPath verbs, SkPoint, and conic weights to add
        @param mode  kAppend_AddPathMode or kExtend_AddPathMode
    */
    void addPath(const SkPath& src, AddPathMode mode = kAppend_AddPathMode) {
        SkMatrix m;
        m.reset();
        this->addPath(src, m, mode);
    }

    /** Append src to SkPath, transformed by matrix. Transformed curves may have different
        verbs, SkPoint, and conic weights.

        If mode is kAppend_AddPathMode, src verb array, SkPoint array, and conic weights are
        added unaltered. If mode is kExtend_AddPathMode, add line before appending
        verbs, SkPoint, and conic weights.

        @param src     SkPath verbs, SkPoint, and conic weights to add
        @param matrix  transform applied to src
        @param mode    kAppend_AddPathMode or kExtend_AddPathMode
    */
    void addPath(const SkPath& src, const SkMatrix& matrix, AddPathMode mode = kAppend_AddPathMode);

    /** Append src to SkPath, from back to front.
        Reversed src always appends a new contour to SkPath.

        @param src  SkPath verbs, SkPoint, and conic weights to add
    */
    void reverseAddPath(const SkPath& src);

    /** Offset SkPoint array by (dx, dy). Offset SkPath replaces dst.
        If dst is nullptr, SkPath is replaced by offset data.

        @param dx   offset added to SkPoint array x coordinates
        @param dy   offset added to SkPoint array y coordinates
        @param dst  overwritten, translated copy of SkPath; may be nullptr
    */
    void offset(SkScalar dx, SkScalar dy, SkPath* dst) const;

    /** Offset SkPoint array by (dx, dy). SkPath is replaced by offset data.

        @param dx  offset added to SkPoint array x coordinates
        @param dy  offset added to SkPoint array y coordinates
    */
    void offset(SkScalar dx, SkScalar dy) {
        this->offset(dx, dy, this);
    }

    /** Transform verb array, SkPoint array, and weight by matrix.
        transform may change verbs and increase their number.
        Transformed SkPath replaces dst; if dst is nullptr, original data
        is replaced.

        @param matrix  SkMatrix to apply to SkPath
        @param dst     overwritten, transformed copy of SkPath; may be nullptr
    */
    void transform(const SkMatrix& matrix, SkPath* dst) const;

    /** Transform verb array, SkPoint array, and weight by matrix.
        transform may change verbs and increase their number.
        SkPath is replaced by transformed data.

        @param matrix  SkMatrix to apply to SkPath
    */
    void transform(const SkMatrix& matrix) {
        this->transform(matrix, this);
    }

    /** Returns last point on SkPath in lastPt. Returns false if SkPoint array is empty,
        storing (0, 0) if lastPt is not nullptr.

        @param lastPt  storage for final SkPoint in SkPoint array; may be nullptr
        @return        true if SkPoint array contains one or more SkPoint
    */
    bool getLastPt(SkPoint* lastPt) const;

    /** Set last point to (x, y). If SkPoint array is empty, append kMove_Verb to
        verb array and append (x, y) to SkPoint array.

        @param x  set x-coordinate of last point
        @param y  set y-coordinate of last point
    */
    void setLastPt(SkScalar x, SkScalar y);

    /** Set the last point on the path. If SkPoint array is empty, append kMove_Verb to
        verb array and append p to SkPoint array.

        @param p  set value of last point
    */
    void setLastPt(const SkPoint& p) {
        this->setLastPt(p.fX, p.fY);
    }

    /** \enum SkPath::SegmentMask
        SegmentMask constants correspond to each drawing Verb type in SkPath; for
        instance, if SkPath only contains lines, only the kLine_SegmentMask bit is set.
    */
    enum SegmentMask {
        kLine_SegmentMask  = 1 << 0, //!< contains one or more lines
        kQuad_SegmentMask  = 1 << 1, //!< contains one or more quads
        kConic_SegmentMask = 1 << 2, //!< contains one or more conics
        kCubic_SegmentMask = 1 << 3, //!< contains one or more cubics
    };

    /** Returns a mask, where each set bit corresponds to a SegmentMask constant
        if SkPath contains one or more verbs of that type.
        Returns zero if SkPath contains no lines, or curves: quads, conics, or cubics.

        getSegmentMasks() returns a cached result; it is very fast.

        @return  SegmentMask bits or zero
    */
    uint32_t getSegmentMasks() const { return fPathRef->getSegmentMasks(); }

    /** \enum SkPath::Verb
        Verb instructs SkPath how to interpret one or more SkPoint and optional conic weight;
        manage contour, and terminate SkPath.
    */
    enum Verb {
        kMove_Verb,  //!< starts new contour at next SkPoint
        kLine_Verb,  //!< adds line from last point to next SkPoint
        kQuad_Verb,  //!< adds quad from last point
        kConic_Verb, //!< adds conic from last point
        kCubic_Verb, //!< adds cubic from last point
        kClose_Verb, //!< closes contour
        kDone_Verb,  //!< terminates SkPath
    };

    /** \class SkPath::Iter
        Iterates through verb array, and associated SkPoint array and conic weight.
        Provides options to treat open contours as closed, and to ignore
        degenerate data.
    */
    class SK_API Iter {
    public:

        /** Initializes SkPath::Iter with an empty SkPath. next() on SkPath::Iter returns kDone_Verb.
            Call setPath to initialize SkPath::Iter at a later time.

            @return  SkPath::Iter of empty SkPath
        */
        Iter();

        /** Sets SkPath::Iter to return elements of verb array, SkPoint array, and conic weight in path.
            If forceClose is true, SkPath::Iter will add kLine_Verb and kClose_Verb after each
            open contour. path is not altered.

            @param path        SkPath to iterate
            @param forceClose  true if open contours generate kClose_Verb
            @return            SkPath::Iter of path
        */
        Iter(const SkPath& path, bool forceClose);

        /** Sets SkPath::Iter to return elements of verb array, SkPoint array, and conic weight in path.
            If forceClose is true, SkPath::Iter will add kLine_Verb and kClose_Verb after each
            open contour. path is not altered.

            @param path        SkPath to iterate
            @param forceClose  true if open contours generate kClose_Verb
        */
        void setPath(const SkPath& path, bool forceClose);

        /** Returns next SkPath::Verb in verb array, and advances SkPath::Iter.
            When verb array is exhausted, returns kDone_Verb.

            Zero to four SkPoint are stored in pts, depending on the returned SkPath::Verb.

            If doConsumeDegenerates is true, skip consecutive kMove_Verb entries, returning
            only the last in the series; and skip very small lines, quads, and conics; and
            skip kClose_Verb following kMove_Verb.
            if doConsumeDegenerates is true and exact is true, only skip lines, quads, and
            conics with zero lengths.

            @param pts                   storage for SkPoint data describing returned SkPath::Verb
            @param doConsumeDegenerates  if true, skip degenerate verbs
            @param exact                 skip zero length curves
            @return                      next SkPath::Verb from verb array
        */
        Verb next(SkPoint pts[4], bool doConsumeDegenerates = true, bool exact = false) {
            if (doConsumeDegenerates) {
                this->consumeDegenerateSegments(exact);
            }
            return this->doNext(pts);
        }

        /** Returns conic weight if next() returned kConic_Verb.

            If next() has not been called, or next() did not return kConic_Verb,
            result is undefined.

            @return  conic weight for conic SkPoint returned by next()
        */
        SkScalar conicWeight() const { return *fConicWeights; }

        /** Returns true if last kLine_Verb returned by next() was generated
            by kClose_Verb. When true, the end point returned by next() is
            also the start point of contour.

            If next() has not been called, or next() did not return kLine_Verb,
            result is undefined.

            @return  true if last kLine_Verb was generated by kClose_Verb
        */
        bool isCloseLine() const { return SkToBool(fCloseLine); }

        /** Returns true if subsequent calls to next() return kClose_Verb before returning
            kMove_Verb. if true, contour SkPath::Iter is processing may end with kClose_Verb, or
            SkPath::Iter may have been initialized with force close set to true.

            @return  true if contour is closed
        */
        bool isClosedContour() const;

    private:
        const SkPoint*  fPts;
        const uint8_t*  fVerbs;
        const uint8_t*  fVerbStop;
        const SkScalar* fConicWeights;
        SkPoint         fMoveTo;
        SkPoint         fLastPt;
        bool            fForceClose;
        bool            fNeedClose;
        bool            fCloseLine;
        enum SegmentState : uint8_t {
            /** The current contour is empty. Starting processing or have just closed a contour. */
            kEmptyContour_SegmentState,
            /** Have seen a move, but nothing else. */
            kAfterMove_SegmentState,
            /** Have seen a primitive but not yet closed the path. Also the initial state. */
            kAfterPrimitive_SegmentState
        };
        SegmentState    fSegmentState;

        inline const SkPoint& cons_moveTo();
        Verb autoClose(SkPoint pts[2]);
        void consumeDegenerateSegments(bool exact);
        Verb doNext(SkPoint pts[4]);

    };

    /** \class SkPath::RawIter
        Iterates through verb array, and associated SkPoint array and conic weight.
        verb array, SkPoint array, and conic weight are returned unaltered.
    */
    class SK_API RawIter {
    public:

        /** Initializes RawIter with an empty SkPath. next() on RawIter returns kDone_Verb.
            Call setPath to initialize SkPath::Iter at a later time.

            @return  RawIter of empty SkPath
        */
        RawIter() {}

        /** Sets RawIter to return elements of verb array, SkPoint array, and conic weight in path.

            @param path  SkPath to iterate
            @return      RawIter of path
        */
        RawIter(const SkPath& path) {
            setPath(path);
        }

        /** Sets SkPath::Iter to return elements of verb array, SkPoint array, and conic weight in path.

            @param path  SkPath to iterate
        */
        void setPath(const SkPath& path) {
            fRawIter.setPathRef(*path.fPathRef.get());
        }

        /** Returns next SkPath::Verb in verb array, and advances RawIter.
            When verb array is exhausted, returns kDone_Verb.
            Zero to four SkPoint are stored in pts, depending on the returned SkPath::Verb.

            @param pts  storage for SkPoint data describing returned SkPath::Verb
            @return     next SkPath::Verb from verb array
        */
        Verb next(SkPoint pts[4]) {
            return (Verb) fRawIter.next(pts);
        }

        /** Returns next SkPath::Verb, but does not advance RawIter.

            @return  next SkPath::Verb from verb array
        */
        Verb peek() const {
            return (Verb) fRawIter.peek();
        }

        /** Returns conic weight if next() returned kConic_Verb.

            If next() has not been called, or next() did not return kConic_Verb,
            result is undefined.

            @return  conic weight for conic SkPoint returned by next()
        */
        SkScalar conicWeight() const {
            return fRawIter.conicWeight();
        }

    private:
        SkPathRef::Iter fRawIter;
        friend class SkPath;

    };

    /** Returns true if the point (x, y) is contained by SkPath, taking into
        account FillType.

        @param x  x-coordinate of containment test
        @param y  y-coordinate of containment test
        @return   true if SkPoint is in SkPath
    */
    bool contains(SkScalar x, SkScalar y) const;

    /** Writes text representation of SkPath to stream. If stream is nullptr, writes to
        standard output. Set forceClose to true to get edges used to fill SkPath.
        Set dumpAsHex true to generate exact binary representations
        of floating point numbers used in SkPoint array and conic weights.

        @param stream      writable SkWStream receiving SkPath text representation; may be nullptr
        @param forceClose  true if missing kClose_Verb is output
        @param dumpAsHex   true if SkScalar values are written as hexadecimal
    */
    void dump(SkWStream* stream, bool forceClose, bool dumpAsHex) const;

    /** Writes text representation of SkPath to standard output. The representation may be
        directly compiled as C++ code. Floating point values are written
        with limited precision; it may not be possible to reconstruct original SkPath
        from output.
    */
    void dump() const;

    /** Writes text representation of SkPath to standard output. The representation may be
        directly compiled as C++ code. Floating point values are written
        in hexadecimal to preserve their exact bit pattern. The output reconstructs the
        original SkPath.

        Use instead of dump() when submitting
    */
    void dumpHex() const;

    /** Writes SkPath to buffer, returning the number of bytes written.
        Pass nullptr to obtain the storage size.

        Writes SkPath::FillType, verb array, SkPoint array, conic weight, and
        additionally writes computed information like SkPath::Convexity and bounds.

        Use only be used in concert with readFromMemory();
        the format used for SkPath in memory is not guaranteed.

        @param buffer  storage for SkPath; may be nullptr
        @return        size of storage required for SkPath; always a multiple of 4
    */
    size_t writeToMemory(void* buffer) const;

    /** Write SkPath to buffer, returning the buffer written to, wrapped in SkData.

        serialize() writes SkPath::FillType, verb array, SkPoint array, conic weight, and
        additionally writes computed information like SkPath::Convexity and bounds.

        serialize() should only be used in concert with readFromMemory().
        The format used for SkPath in memory is not guaranteed.

        @return  SkPath data wrapped in SkData buffer
    */
    sk_sp<SkData> serialize() const;

    /** Initializes SkPath from buffer of size length. Returns zero if the buffer is
        data is inconsistent, or the length is too small.

        Reads SkPath::FillType, verb array, SkPoint array, conic weight, and
        additionally reads computed information like SkPath::Convexity and bounds.

        Used only in concert with writeToMemory();
        the format used for SkPath in memory is not guaranteed.

        @param buffer  storage for SkPath
        @param length  buffer size in bytes; must be multiple of 4
        @return        number of bytes read, or zero on failure
    */
    size_t readFromMemory(const void* buffer, size_t length);

    /** (see skbug.com/1762)
        Returns a non-zero, globally unique value. A different value is returned
        if verb array, SkPoint array, or conic weight changes.

        Setting SkPath::FillType does not change generation id.

        Each time the path is modified, a different generation id will be returned.
        SkPath::FillType does affect generation id on Android framework.

        @return  non-zero, globally unique value
    */
    uint32_t getGenerationID() const;

#ifdef SK_SUPPORT_DIRECT_PATHREF_VALIDATION
    /** Returns if SkPath data is consistent. Corrupt SkPath data is detected if
        internal values are out of range or internal storage does not match
        array dimensions.

        @return  true if SkPath data is consistent
    */
    bool isValid() const { return this->isValidImpl() && fPathRef->isValid(); }
#else
    bool isValid() const { return this->isValidImpl(); }
    bool pathRefIsValid() const { return fPathRef->isValid(); }
#endif

private:
    sk_sp<SkPathRef>                                     fPathRef;
    int                                                  fLastMoveToIndex;
    uint8_t                                              fFillType;
    mutable SkAtomic<Convexity, sk_memory_order_relaxed> fConvexity;
    mutable SkAtomic<uint8_t, sk_memory_order_relaxed>   fFirstDirection;// SkPathPriv::FirstDirection
    bool                                                 fIsVolatile;
    bool                                                 fIsBadForDAA = false;

    /** Resets all fields other than fPathRef to their initial 'empty' values.
     *  Assumes the caller has already emptied fPathRef.
     *  On Android increments fGenerationID without reseting it.
     */
    void resetFields();

    /** Sets all fields other than fPathRef to the values in 'that'.
     *  Assumes the caller has already set fPathRef.
     *  Doesn't change fGenerationID or fSourcePath on Android.
     */
    void copyFields(const SkPath& that);

    size_t writeToMemoryAsRRect(void* buffer) const;
    size_t readAsRRect(const void*, size_t);
    size_t readFromMemory_LE3(const void*, size_t);
    size_t readFromMemory_EQ4(const void*, size_t);

    friend class Iter;
    friend class SkPathPriv;
    friend class SkPathStroker;

    /*  Append, in reverse order, the first contour of path, ignoring path's
        last point. If no moveTo() call has been made for this contour, the
        first point is automatically set to (0,0).
    */
    void reversePathTo(const SkPath&);

    // called before we add points for lineTo, quadTo, cubicTo, checking to see
    // if we need to inject a leading moveTo first
    //
    //  SkPath path; path.lineTo(...);   <--- need a leading moveTo(0, 0)
    // SkPath path; ... path.close(); path.lineTo(...) <-- need a moveTo(previous moveTo)
    //
    inline void injectMoveToIfNeeded();

    inline bool hasOnlyMoveTos() const;

    Convexity internalGetConvexity() const;

    /** Asserts if SkPath data is inconsistent.
        Debugging check intended for internal use only.
     */
    SkDEBUGCODE(void validate() const { SkASSERT(this->isValidImpl()); } )
    bool isValidImpl() const;
    SkDEBUGCODE(void validateRef() const { fPathRef->validate(); } )

    bool isRectContour(bool allowPartial, int* currVerb, const SkPoint** pts,
                       bool* isClosed, Direction* direction, SkRect* rect) const;

    // called by stroker to see if all points (in the last contour) are equal and worthy of a cap
    bool isZeroLengthSincePoint(int startPtIndex) const;

    /** Returns if the path can return a bound at no cost (true) or will have to
        perform some computation (false).
     */
    bool hasComputedBounds() const {
        SkDEBUGCODE(this->validate();)
        return fPathRef->hasComputedBounds();
    }


    // 'rect' needs to be sorted
    void setBounds(const SkRect& rect) {
        SkPathRef::Editor ed(&fPathRef);

        ed.setBounds(rect);
    }

    void setPt(int index, SkScalar x, SkScalar y);

    friend class SkAutoPathBoundsUpdate;
    friend class SkAutoDisableOvalCheck;
    friend class SkAutoDisableDirectionCheck;
    friend class SkPathWriter;
    friend class SkOpBuilder;
    friend class SkBench_AddPathTest; // perf test reversePathTo
    friend class PathTest_Private; // unit test reversePathTo
    friend class ForceIsRRect_Private; // unit test isRRect
    friend class FuzzPath; // for legacy access to validateRef
};

#endif