aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkMatrix.h
blob: f2c6512c5c7f7c8636fe8ceba8cce5ed2d089090 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef SkMatrix_DEFINED
#define SkMatrix_DEFINED

#include "SkRect.h"

class SkString;

#ifdef SK_SCALAR_IS_FLOAT
    typedef SkScalar SkPersp;
    #define SkScalarToPersp(x) (x)
    #define SkPerspToScalar(x) (x)
#else
    typedef SkFract SkPersp;
    #define SkScalarToPersp(x) SkFixedToFract(x)
    #define SkPerspToScalar(x) SkFractToFixed(x)
#endif

/** \class SkMatrix

    The SkMatrix class holds a 3x3 matrix for transforming coordinates.
    SkMatrix does not have a constructor, so it must be explicitly initialized
    using either reset() - to construct an identity matrix, or one of the set
    functions (e.g. setTranslate, setRotate, etc.).
*/
class SK_API SkMatrix {
public:
    /** Enum of bit fields for the mask return by getType().
        Use this to identify the complexity of the matrix.
    */
    enum TypeMask {
        kIdentity_Mask      = 0,
        kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
        kScale_Mask         = 0x02,  //!< set if the matrix has X or Y scale
        kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
        kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
    };

    /** Returns a bitfield describing the transformations the matrix may
        perform. The bitfield is computed conservatively, so it may include
        false positives. For example, when kPerspective_Mask is true, all
        other bits may be set to true even in the case of a pure perspective
        transform.
   */
    TypeMask getType() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        // only return the public masks
        return (TypeMask)(fTypeMask & 0xF);
    }

    /** Returns true if the matrix is identity.
    */
    bool isIdentity() const {
        return this->getType() == 0;
    }

    /** Returns true if will map a rectangle to another rectangle. This can be
        true if the matrix is identity, scale-only, or rotates a multiple of
        90 degrees.
    */
    bool rectStaysRect() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        return (fTypeMask & kRectStaysRect_Mask) != 0;
    }
    // alias for rectStaysRect()
    bool preservesAxisAlignment() const { return this->rectStaysRect(); }

    /**
     *  Returns true if the matrix contains perspective elements.
     */
    bool hasPerspective() const {
        return SkToBool(this->getPerspectiveTypeMaskOnly() &
                        kPerspective_Mask);
    }

    enum {
        kMScaleX,
        kMSkewX,
        kMTransX,
        kMSkewY,
        kMScaleY,
        kMTransY,
        kMPersp0,
        kMPersp1,
        kMPersp2
    };

    /** Affine arrays are in column major order
        because that's how PDF and XPS like it.
     */
    enum {
        kAScaleX,
        kASkewY,
        kASkewX,
        kAScaleY,
        kATransX,
        kATransY
    };

    SkScalar operator[](int index) const {
        SkASSERT((unsigned)index < 9);
        return fMat[index];
    }

    SkScalar get(int index) const {
        SkASSERT((unsigned)index < 9);
        return fMat[index];
    }

    SkScalar getScaleX() const { return fMat[kMScaleX]; }
    SkScalar getScaleY() const { return fMat[kMScaleY]; }
    SkScalar getSkewY() const { return fMat[kMSkewY]; }
    SkScalar getSkewX() const { return fMat[kMSkewX]; }
    SkScalar getTranslateX() const { return fMat[kMTransX]; }
    SkScalar getTranslateY() const { return fMat[kMTransY]; }
    SkPersp getPerspX() const { return fMat[kMPersp0]; }
    SkPersp getPerspY() const { return fMat[kMPersp1]; }

    SkScalar& operator[](int index) {
        SkASSERT((unsigned)index < 9);
        this->setTypeMask(kUnknown_Mask);
        return fMat[index];
    }

    void set(int index, SkScalar value) {
        SkASSERT((unsigned)index < 9);
        fMat[index] = value;
        this->setTypeMask(kUnknown_Mask);
    }

    void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
    void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
    void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
    void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
    void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
    void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
    void setPerspX(SkPersp v) { this->set(kMPersp0, v); }
    void setPerspY(SkPersp v) { this->set(kMPersp1, v); }

    void setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
                SkScalar skewY, SkScalar scaleY, SkScalar transY,
                SkPersp persp0, SkPersp persp1, SkPersp persp2) {
        fMat[kMScaleX] = scaleX;
        fMat[kMSkewX]  = skewX;
        fMat[kMTransX] = transX;
        fMat[kMSkewY]  = skewY;
        fMat[kMScaleY] = scaleY;
        fMat[kMTransY] = transY;
        fMat[kMPersp0] = persp0;
        fMat[kMPersp1] = persp1;
        fMat[kMPersp2] = persp2;
        this->setTypeMask(kUnknown_Mask);
    }

    /** Set the matrix to identity
    */
    void reset();
    // alias for reset()
    void setIdentity() { this->reset(); }

    /** Set the matrix to translate by (dx, dy).
    */
    void setTranslate(SkScalar dx, SkScalar dy);
    /** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
        The pivot point is the coordinate that should remain unchanged by the
        specified transformation.
    */
    void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
    /** Set the matrix to scale by sx and sy.
    */
    void setScale(SkScalar sx, SkScalar sy);
    /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
        touch the matrix if either divx or divy is zero.
    */
    bool setIDiv(int divx, int divy);
    /** Set the matrix to rotate by the specified number of degrees, with a
        pivot point at (px, py). The pivot point is the coordinate that should
        remain unchanged by the specified transformation.
    */
    void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
    /** Set the matrix to rotate about (0,0) by the specified number of degrees.
    */
    void setRotate(SkScalar degrees);
    /** Set the matrix to rotate by the specified sine and cosine values, with
        a pivot point at (px, py). The pivot point is the coordinate that
        should remain unchanged by the specified transformation.
    */
    void setSinCos(SkScalar sinValue, SkScalar cosValue,
                   SkScalar px, SkScalar py);
    /** Set the matrix to rotate by the specified sine and cosine values.
    */
    void setSinCos(SkScalar sinValue, SkScalar cosValue);
    /** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
        The pivot point is the coordinate that should remain unchanged by the
        specified transformation.
    */
    void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
    /** Set the matrix to skew by sx and sy.
    */
    void setSkew(SkScalar kx, SkScalar ky);
    /** Set the matrix to the concatenation of the two specified matrices,
        returning true if the the result can be represented. Either of the
        two matrices may also be the target matrix. *this = a * b;
    */
    bool setConcat(const SkMatrix& a, const SkMatrix& b);

    /** Preconcats the matrix with the specified translation.
        M' = M * T(dx, dy)
    */
    bool preTranslate(SkScalar dx, SkScalar dy);
    /** Preconcats the matrix with the specified scale.
        M' = M * S(sx, sy, px, py)
    */
    bool preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
    /** Preconcats the matrix with the specified scale.
        M' = M * S(sx, sy)
    */
    bool preScale(SkScalar sx, SkScalar sy);
    /** Preconcats the matrix with the specified rotation.
        M' = M * R(degrees, px, py)
    */
    bool preRotate(SkScalar degrees, SkScalar px, SkScalar py);
    /** Preconcats the matrix with the specified rotation.
        M' = M * R(degrees)
    */
    bool preRotate(SkScalar degrees);
    /** Preconcats the matrix with the specified skew.
        M' = M * K(kx, ky, px, py)
    */
    bool preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
    /** Preconcats the matrix with the specified skew.
        M' = M * K(kx, ky)
    */
    bool preSkew(SkScalar kx, SkScalar ky);
    /** Preconcats the matrix with the specified matrix.
        M' = M * other
    */
    bool preConcat(const SkMatrix& other);

    /** Postconcats the matrix with the specified translation.
        M' = T(dx, dy) * M
    */
    bool postTranslate(SkScalar dx, SkScalar dy);
    /** Postconcats the matrix with the specified scale.
        M' = S(sx, sy, px, py) * M
    */
    bool postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
    /** Postconcats the matrix with the specified scale.
        M' = S(sx, sy) * M
    */
    bool postScale(SkScalar sx, SkScalar sy);
    /** Postconcats the matrix by dividing it by the specified integers.
        M' = S(1/divx, 1/divy, 0, 0) * M
    */
    bool postIDiv(int divx, int divy);
    /** Postconcats the matrix with the specified rotation.
        M' = R(degrees, px, py) * M
    */
    bool postRotate(SkScalar degrees, SkScalar px, SkScalar py);
    /** Postconcats the matrix with the specified rotation.
        M' = R(degrees) * M
    */
    bool postRotate(SkScalar degrees);
    /** Postconcats the matrix with the specified skew.
        M' = K(kx, ky, px, py) * M
    */
    bool postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
    /** Postconcats the matrix with the specified skew.
        M' = K(kx, ky) * M
    */
    bool postSkew(SkScalar kx, SkScalar ky);
    /** Postconcats the matrix with the specified matrix.
        M' = other * M
    */
    bool postConcat(const SkMatrix& other);

    enum ScaleToFit {
        /**
         * Scale in X and Y independently, so that src matches dst exactly.
         * This may change the aspect ratio of the src.
         */
        kFill_ScaleToFit,
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. kStart aligns the result to the
         * left and top edges of dst.
         */
        kStart_ScaleToFit,
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. The result is centered inside dst.
         */
        kCenter_ScaleToFit,
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. kEnd aligns the result to the
         * right and bottom edges of dst.
         */
        kEnd_ScaleToFit
    };

    /** Set the matrix to the scale and translate values that map the source
        rectangle to the destination rectangle, returning true if the the result
        can be represented.
        @param src the source rectangle to map from.
        @param dst the destination rectangle to map to.
        @param stf the ScaleToFit option
        @return true if the matrix can be represented by the rectangle mapping.
    */
    bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);

    /** Set the matrix such that the specified src points would map to the
        specified dst points. count must be within [0..4].
        @param src  The array of src points
        @param dst  The array of dst points
        @param count The number of points to use for the transformation
        @return true if the matrix was set to the specified transformation
    */
    bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);

    /** If this matrix can be inverted, return true and if inverse is not null,
        set inverse to be the inverse of this matrix. If this matrix cannot be
        inverted, ignore inverse and return false
    */
    bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const;

    /** Fills the passed array with affine identity values
        in column major order.
        @param affine  The array to fill with affine identity values.
        Must not be NULL.
    */
    static void SetAffineIdentity(SkScalar affine[6]);

    /** Fills the passed array with the affine values in column major order.
        If the matrix is a perspective transform, returns false
        and does not change the passed array.
        @param affine  The array to fill with affine values. Ignored if NULL.
    */
    bool asAffine(SkScalar affine[6]) const;

    /** Apply this matrix to the array of points specified by src, and write
        the transformed points into the array of points specified by dst.
        dst[] = M * src[]
        @param dst  Where the transformed coordinates are written. It must
                    contain at least count entries
        @param src  The original coordinates that are to be transformed. It
                    must contain at least count entries
        @param count The number of points in src to read, and then transform
                     into dst.
    */
    void mapPoints(SkPoint dst[], const SkPoint src[], int count) const;

    /** Apply this matrix to the array of points, overwriting it with the
        transformed values.
        dst[] = M * pts[]
        @param pts  The points to be transformed. It must contain at least
                    count entries
        @param count The number of points in pts.
    */
    void mapPoints(SkPoint pts[], int count) const {
        this->mapPoints(pts, pts, count);
    }

    /** Like mapPoints but with custom byte stride between the points. Stride
     *  should be a multiple of sizeof(SkScalar).
     */
    void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const {
        SkASSERT(stride >= sizeof(SkPoint));
        SkASSERT(0 == stride % sizeof(SkScalar));
        for (int i = 0; i < count; ++i) {
            this->mapPoints(pts, pts, 1);
            pts = (SkPoint*)((intptr_t)pts + stride);
        }
    }

    /** Like mapPoints but with custom byte stride between the points.
    */
    void mapPointsWithStride(SkPoint dst[], SkPoint src[],
                             size_t stride, int count) const {
        SkASSERT(stride >= sizeof(SkPoint));
        SkASSERT(0 == stride % sizeof(SkScalar));
        for (int i = 0; i < count; ++i) {
            this->mapPoints(dst, src, 1);
            src = (SkPoint*)((intptr_t)src + stride);
            dst = (SkPoint*)((intptr_t)dst + stride);
        }
    }

    void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
        SkASSERT(result);
        this->getMapXYProc()(*this, x, y, result);
    }

    /** Apply this matrix to the array of vectors specified by src, and write
        the transformed vectors into the array of vectors specified by dst.
        This is similar to mapPoints, but ignores any translation in the matrix.
        @param dst  Where the transformed coordinates are written. It must
                    contain at least count entries
        @param src  The original coordinates that are to be transformed. It
                    must contain at least count entries
        @param count The number of vectors in src to read, and then transform
                     into dst.
    */
    void mapVectors(SkVector dst[], const SkVector src[], int count) const;

    /** Apply this matrix to the array of vectors specified by src, and write
        the transformed vectors into the array of vectors specified by dst.
        This is similar to mapPoints, but ignores any translation in the matrix.
        @param vecs The vectors to be transformed. It must contain at least
                    count entries
        @param count The number of vectors in vecs.
    */
    void mapVectors(SkVector vecs[], int count) const {
        this->mapVectors(vecs, vecs, count);
    }

    /** Apply this matrix to the src rectangle, and write the transformed
        rectangle into dst. This is accomplished by transforming the 4 corners
        of src, and then setting dst to the bounds of those points.
        @param dst  Where the transformed rectangle is written.
        @param src  The original rectangle to be transformed.
        @return the result of calling rectStaysRect()
    */
    bool mapRect(SkRect* dst, const SkRect& src) const;

    /** Apply this matrix to the rectangle, and write the transformed rectangle
        back into it. This is accomplished by transforming the 4 corners of
        rect, and then setting it to the bounds of those points
        @param rect The rectangle to transform.
        @return the result of calling rectStaysRect()
    */
    bool mapRect(SkRect* rect) const {
        return this->mapRect(rect, *rect);
    }

    /** Return the mean radius of a circle after it has been mapped by
        this matrix. NOTE: in perspective this value assumes the circle
        has its center at the origin.
    */
    SkScalar mapRadius(SkScalar radius) const;

    typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
                                 SkPoint* result);

    static MapXYProc GetMapXYProc(TypeMask mask) {
        SkASSERT((mask & ~kAllMasks) == 0);
        return gMapXYProcs[mask & kAllMasks];
    }

    MapXYProc getMapXYProc() const {
        return GetMapXYProc(this->getType());
    }

    typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
                                  const SkPoint src[], int count);

    static MapPtsProc GetMapPtsProc(TypeMask mask) {
        SkASSERT((mask & ~kAllMasks) == 0);
        return gMapPtsProcs[mask & kAllMasks];
    }

    MapPtsProc getMapPtsProc() const {
        return GetMapPtsProc(this->getType());
    }

    /** If the matrix can be stepped in X (not complex perspective)
        then return true and if step[XY] is not null, return the step[XY] value.
        If it cannot, return false and ignore step.
    */
    bool fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const;

    /** Efficient comparison of two matrices. It distinguishes between zero and
     *  negative zero. It will return false when the sign of zero values is the
     *  only difference between the two matrices. It considers NaN values to be
     *  equal to themselves. So a matrix full of NaNs is "cheap equal" to
     *  another matrix full of NaNs iff the NaN values are bitwise identical
     *  while according to strict the strict == test a matrix with a NaN value
     *  is equal to nothing, including itself.
     */
    bool cheapEqualTo(const SkMatrix& m) const {
        return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
    }

#ifdef SK_SCALAR_IS_FIXED
    friend bool operator==(const SkMatrix& a, const SkMatrix& b) {
        return a.cheapEqualTo(b);
    }
#else
    friend bool operator==(const SkMatrix& a, const SkMatrix& b);
#endif
    friend bool operator!=(const SkMatrix& a, const SkMatrix& b) {
        return !(a == b);
    }

    enum {
        // writeTo/readFromMemory will never return a value larger than this
        kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t)
    };
    // return the number of bytes written, whether or not buffer is null
    uint32_t writeToMemory(void* buffer) const;
    // return the number of bytes read
    uint32_t readFromMemory(const void* buffer);

    void dump() const;
    void toDumpString(SkString*) const;

    /**
     * Calculates the maximum stretching factor of the matrix. If the matrix has
     * perspective -1 is returned.
     *
     * @return maximum strecthing factor
     */
    SkScalar getMaxStretch() const;

    /**
     *  Return a reference to a const identity matrix
     */
    static const SkMatrix& I();

    /**
     *  Return a reference to a const matrix that is "invalid", one that could
     *  never be used.
     */
    static const SkMatrix& InvalidMatrix();

    /**
     * Testing routine; the matrix's type cache should never need to be
     * manually invalidated during normal use.
     */
    void dirtyMatrixTypeCache() {
        this->setTypeMask(kUnknown_Mask);
    }

private:
    enum {
        /** Set if the matrix will map a rectangle to another rectangle. This
            can be true if the matrix is scale-only, or rotates a multiple of
            90 degrees.

            This bit will be set on identity matrices
        */
        kRectStaysRect_Mask = 0x10,

        /** Set if the perspective bit is valid even though the rest of
            the matrix is Unknown.
        */
        kOnlyPerspectiveValid_Mask = 0x40,

        kUnknown_Mask = 0x80,

        kORableMasks =  kTranslate_Mask |
                        kScale_Mask |
                        kAffine_Mask |
                        kPerspective_Mask,

        kAllMasks = kTranslate_Mask |
                    kScale_Mask |
                    kAffine_Mask |
                    kPerspective_Mask |
                    kRectStaysRect_Mask
    };

    SkScalar         fMat[9];
    mutable uint32_t fTypeMask;

    uint8_t computeTypeMask() const;
    uint8_t computePerspectiveTypeMask() const;

    void setTypeMask(int mask) {
        // allow kUnknown or a valid mask
        SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
                 ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
                 == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
        fTypeMask = SkToU8(mask);
    }

    void orTypeMask(int mask) {
        SkASSERT((mask & kORableMasks) == mask);
        fTypeMask = SkToU8(fTypeMask | mask);
    }

    void clearTypeMask(int mask) {
        // only allow a valid mask
        SkASSERT((mask & kAllMasks) == mask);
        fTypeMask &= ~mask;
    }

    TypeMask getPerspectiveTypeMaskOnly() const {
        if ((fTypeMask & kUnknown_Mask) &&
            !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
            fTypeMask = this->computePerspectiveTypeMask();
        }
        return (TypeMask)(fTypeMask & 0xF);
    }

    /** Returns true if we already know that the matrix is identity;
        false otherwise.
    */
    bool isTriviallyIdentity() const {
        if (fTypeMask & kUnknown_Mask) {
            return false;
        }
        return ((fTypeMask & 0xF) == 0);
    }

    static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);

    static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);

    static const MapXYProc gMapXYProcs[];

    static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
    static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
                               int count);
    static void Rot_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    static void RotTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
                             int count);
    static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);

    static const MapPtsProc gMapPtsProcs[];

    friend class SkPerspIter;
};

#endif