aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkMatrix.h
blob: 333bcbf487649dcf0fcfaf0c7bb5ce90d4a0e448 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef SkMatrix_DEFINED
#define SkMatrix_DEFINED

#include "SkRect.h"

struct SkRSXform;
struct SkPoint3;
class SkString;

/** \class SkMatrix
    SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping
    SkPoint and vectors with translation, scaling, skewing, rotation, and
    perspective.

    SkMatrix elements are in row major order. SkMatrix does not have a constructor,
    so it must be explicitly initialized. setIdentity() initializes SkMatrix
    so it has no effect. setTranslate(), setScale(), setSkew(), setRotate(), set9 and setAll()
    initializes all SkMatrix elements with the corresponding mapping.

    SkMatrix includes a hidden variable that classifies the type of matrix to
    improve performance. SkMatrix is not thread safe unless getType() is called first.
*/
SK_BEGIN_REQUIRE_DENSE
class SK_API SkMatrix {
public:

    /** Sets SkMatrix to scale by (sx, sy). Returned matrix is:

            | sx  0  0 |
            |  0 sy  0 |
            |  0  0  1 |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @return    SkMatrix with scale
    */
    static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) {
        SkMatrix m;
        m.setScale(sx, sy);
        return m;
    }

    /** Sets SkMatrix to scale by (scale, scale). Returned matrix is:

            | scale   0   0 |
            |   0   scale 0 |
            |   0     0   1 |

        @param scale  horizontal and vertical scale factor
        @return       SkMatrix with scale
    */
    static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) {
        SkMatrix m;
        m.setScale(scale, scale);
        return m;
    }

    /** Sets SkMatrix to translate by (dx, dy). Returned matrix is:

            | 1 0 dx |
            | 0 1 dy |
            | 0 0  1 |

        @param dx  horizontal translation
        @param dy  vertical translation
        @return    SkMatrix with translation
    */
    static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) {
        SkMatrix m;
        m.setTranslate(dx, dy);
        return m;
    }

    /** Sets SkMatrix to:

            | scaleX  skewX transX |
            |  skewY scaleY transY |
            |  pers0  pers1  pers2 |

        @param scaleX  horizontal scale factor
        @param skewX   horizontal skew factor
        @param transX  horizontal translation
        @param skewY   vertical skew factor
        @param scaleY  vertical scale factor
        @param transY  vertical translation
        @param pers0   input x perspective factor
        @param pers1   input y perspective factor
        @param pers2   perspective scale factor
        @return        SkMatrix constructed from parameters
    */
    static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX,  SkScalar transX,
                                                  SkScalar skewY,  SkScalar scaleY, SkScalar transY,
                                                  SkScalar pers0, SkScalar pers1, SkScalar pers2) {
        SkMatrix m;
        m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2);
        return m;
    }

    /** \enum SkMatrix::TypeMask
        Enum of bit fields for mask returned by getType().
        Used to identify the complexity of SkMatrix, to optimize performance.
    */
    enum TypeMask {
        kIdentity_Mask    = 0,    //!< all bits clear if SkMatrix is identity
        kTranslate_Mask   = 0x01, //!< set if SkMatrix has translation
        kScale_Mask       = 0x02, //!< set if SkMatrix has x or y scale
        kAffine_Mask      = 0x04, //!< set if SkMatrix skews or rotates
        kPerspective_Mask = 0x08, //!< set if SkMatrix has perspective
    };

    /** Returns a bit field describing the transformations the matrix may
        perform. The bit field is computed conservatively, so it may include
        false positives. For example, when kPerspective_Mask is set, all
        other bits are set.

        @return  kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask,
                 kAffine_Mask, kPerspective_Mask
    */
    TypeMask getType() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        // only return the public masks
        return (TypeMask)(fTypeMask & 0xF);
    }

    /** Returns true if SkMatrix is identity.  Identity matrix is:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        @return  true if SkMatrix has no effect
    */
    bool isIdentity() const {
        return this->getType() == 0;
    }

    /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity,
        contain only scale elements, only translate elements, or both. SkMatrix form is:

            | scale-x    0    translate-x |
            |    0    scale-y translate-y |
            |    0       0         1      |

        @return  true if SkMatrix is identity; or scales, translates, or both
    */
    bool isScaleTranslate() const {
        return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
    }

    /** Returns true if SkMatrix is identity, or translates. SkMatrix form is:

            | 1 0 translate-x |
            | 0 1 translate-y |
            | 0 0      1      |

        @return  true if SkMatrix is identity, or translates
    */
    bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); }

    /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
        or scales, or rotates a multiple of 90 degrees, or mirrors in x or y. In all
        cases, SkMatrix may also have translation. SkMatrix form is either:

            | scale-x    0    translate-x |
            |    0    scale-y translate-y |
            |    0       0         1      |

        or

            |    0     rotate-x translate-x |
            | rotate-y    0     translate-y |
            |    0        0          1      |

        for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.

        Also called preservesAxisAlignment(); use the one that provides better inline
        documentation.

        @return  true if SkMatrix maps one SkRect into another
    */
    bool rectStaysRect() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        return (fTypeMask & kRectStaysRect_Mask) != 0;
    }

    /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
        or scales, or rotates a multiple of 90 degrees, or mirrors in x or y. In all
        cases, SkMatrix may also have translation. SkMatrix form is either:

            | scale-x    0    translate-x |
            |    0    scale-y translate-y |
            |    0       0         1      |

        or

            |    0     rotate-x translate-x |
            | rotate-y    0     translate-y |
            |    0        0          1      |

        for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.

        Also called rectStaysRect(); use the one that provides better inline
        documentation.

        @return  true if SkMatrix maps one SkRect into another
    */
    bool preservesAxisAlignment() const { return this->rectStaysRect(); }

    /** Returns true if the matrix contains perspective elements. SkMatrix form is:

            |       --            --              --          |
            |       --            --              --          |
            | perspective-x  perspective-y  perspective-scale |

        where perspective-x or perspective-y is non-zero, or perspective-scale is
        not one. All other elements may have any value.

        @return  true if SkMatrix is in most general form
    */
    bool hasPerspective() const {
        return SkToBool(this->getPerspectiveTypeMaskOnly() &
                        kPerspective_Mask);
    }

    /** Returns true if SkMatrix contains only translation, rotation, reflection, and
        uniform scale.
        Returns false if SkMatrix contains different scales, skewing, perspective, or
        degenerate forms that collapse to a line or point.

        Describes that the SkMatrix makes rendering with and without the matrix are
        visually alike; a transformed circle remains a circle. Mathematically, this is
        referred to as similarity of a Euclidean_Space, or a similarity transformation.

        Preserves right angles, keeping the arms of the angle equal lengths.

        @param tol  to be deprecated
        @return     true if SkMatrix only rotates, uniformly scales, translates
    */
    bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;

    /** Returns true if SkMatrix contains only translation, rotation, reflection, and
        scale. Scale may differ along rotated axes.
        Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse
        to a line or point.

        Preserves right angles, but not requiring that the arms of the angle
        retain equal lengths.

        @param tol  to be deprecated
        @return     true if SkMatrix only rotates, scales, translates
    */
    bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;

    /** \enum
        SkMatrix organizes its values in row order. These members correspond to
        each value in SkMatrix.
    */
    enum {
        kMScaleX, //!< horizontal scale factor
        kMSkewX,  //!< horizontal skew factor
        kMTransX, //!< horizontal translation
        kMSkewY,  //!< vertical skew factor
        kMScaleY, //!< vertical scale factor
        kMTransY, //!< vertical translation
        kMPersp0, //!< input x perspective factor
        kMPersp1, //!< input y perspective factor
        kMPersp2, //!< perspective bias
    };

    /** \enum
        Affine arrays are in column major order to match the matrix used by
        PDF and XPS.
    */
    enum {
        kAScaleX, //!< horizontal scale factor
        kASkewY,  //!< vertical skew factor
        kASkewX,  //!< horizontal skew factor
        kAScaleY, //!< vertical scale factor
        kATransX, //!< horizontal translation
        kATransY, //!< vertical translation
    };

    /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
        defined.

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @return       value corresponding to index
    */
    SkScalar operator[](int index) const {
        SkASSERT((unsigned)index < 9);
        return fMat[index];
    }

    /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
        defined.

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @return       value corresponding to index
    */
    SkScalar get(int index) const {
        SkASSERT((unsigned)index < 9);
        return fMat[index];
    }

    /** Returns scale factor multiplied by x input, contributing to x output.
        With mapPoints(), scales SkPoint along the x-axis.

        @return  horizontal scale factor
    */
    SkScalar getScaleX() const { return fMat[kMScaleX]; }

    /** Returns scale factor multiplied by y input, contributing to y output.
        With mapPoints(), scales SkPoint along the y-axis.

        @return  vertical scale factor
    */
    SkScalar getScaleY() const { return fMat[kMScaleY]; }

    /** Returns scale factor multiplied by x input, contributing to y output.
        With mapPoints(), skews SkPoint along the y-axis.
        Skew x and y together can rotate SkPoint.

        @return  vertical skew factor
    */
    SkScalar getSkewY() const { return fMat[kMSkewY]; }

    /** Returns scale factor multiplied by y input, contributing to x output.
        With mapPoints(), skews SkPoint along the x-axis.
        Skew x and y together can rotate SkPoint.

        @return  horizontal scale factor
    */
    SkScalar getSkewX() const { return fMat[kMSkewX]; }

    /** Returns translation contributing to x output.
        With mapPoints(), moves SkPoint along the x-axis.

        @return  horizontal translation factor
    */
    SkScalar getTranslateX() const { return fMat[kMTransX]; }

    /** Returns translation contributing to y output.
        With mapPoints(), moves SkPoint along the y-axis.

        @return  vertical translation factor
    */
    SkScalar getTranslateY() const { return fMat[kMTransY]; }

    /** Returns factor scaling input x relative to input y.

        @return  input x perspective factor
    */
    SkScalar getPerspX() const { return fMat[kMPersp0]; }

    /** Returns factor scaling input y relative to input x.

        @return  input y perspective factor
    */
    SkScalar getPerspY() const { return fMat[kMPersp1]; }

    /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is
        defined. Clears internal cache anticipating that caller will change SkMatrix value.

        Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix
        value must be followed by dirtyMatrixTypeCache().

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @return       writable value corresponding to index
    */
    SkScalar& operator[](int index) {
        SkASSERT((unsigned)index < 9);
        this->setTypeMask(kUnknown_Mask);
        return fMat[index];
    }

    /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is
        defined. Safer than operator[]; internal cache is always maintained.

        @param index  one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
                      kMPersp0, kMPersp1, kMPersp2
        @param value  scalar to store in SkMatrix
    */
    void set(int index, SkScalar value) {
        SkASSERT((unsigned)index < 9);
        fMat[index] = value;
        this->setTypeMask(kUnknown_Mask);
    }

    /** Sets horizontal scale factor.

        @param v  horizontal scale factor to store
    */
    void setScaleX(SkScalar v) { this->set(kMScaleX, v); }

    /** Sets vertical scale factor.

        @param v  vertical scale factor to store
    */
    void setScaleY(SkScalar v) { this->set(kMScaleY, v); }

    /** Sets vertical skew factor.

        @param v  vertical skew factor to store
    */
    void setSkewY(SkScalar v) { this->set(kMSkewY, v); }

    /** Sets horizontal skew factor.

        @param v  horizontal skew factor to store
    */
    void setSkewX(SkScalar v) { this->set(kMSkewX, v); }

    /** Sets horizontal translation.

        @param v  horizontal translation to store
    */
    void setTranslateX(SkScalar v) { this->set(kMTransX, v); }

    /** Sets vertical translation.

        @param v  vertical translation to store
    */
    void setTranslateY(SkScalar v) { this->set(kMTransY, v); }

    /** Sets input x perspective factor, which causes mapXY() to vary input x inversely
        proportional to input y.

        @param v  perspective factor
    */
    void setPerspX(SkScalar v) { this->set(kMPersp0, v); }

    /** Sets input y perspective factor, which causes mapXY() to vary input y inversely
        proportional to input x.

        @param v  perspective factor
    */
    void setPerspY(SkScalar v) { this->set(kMPersp1, v); }

    /** Sets all values from parameters. Sets matrix to:

            | scaleX  skewX transX |
            |  skewY scaleY transY |
            | persp0 persp1 persp2 |

        @param scaleX  horizontal scale factor to store
        @param skewX   horizontal skew factor to store
        @param transX  horizontal translation to store
        @param skewY   vertical skew factor to store
        @param scaleY  vertical scale factor to store
        @param transY  vertical translation to store
        @param persp0  input x perspective factor to store
        @param persp1  input y perspective factor to store
        @param persp2  perspective scale factor to store
    */
    void setAll(SkScalar scaleX, SkScalar skewX,  SkScalar transX,
                SkScalar skewY,  SkScalar scaleY, SkScalar transY,
                SkScalar persp0, SkScalar persp1, SkScalar persp2) {
        fMat[kMScaleX] = scaleX;
        fMat[kMSkewX]  = skewX;
        fMat[kMTransX] = transX;
        fMat[kMSkewY]  = skewY;
        fMat[kMScaleY] = scaleY;
        fMat[kMTransY] = transY;
        fMat[kMPersp0] = persp0;
        fMat[kMPersp1] = persp1;
        fMat[kMPersp2] = persp2;
        this->setTypeMask(kUnknown_Mask);
    }

    /** Copies nine scalar values contained by SkMatrix into buffer, in member value
        ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
        kMPersp0, kMPersp1, kMPersp2.

        @param buffer  storage for nine scalar values
    */
    void get9(SkScalar buffer[9]) const {
        memcpy(buffer, fMat, 9 * sizeof(SkScalar));
    }

    /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order:
        kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1,
        kMPersp2.

        Sets matrix to:

            | buffer[0] buffer[1] buffer[2] |
            | buffer[3] buffer[4] buffer[5] |
            | buffer[6] buffer[7] buffer[8] |

        In the future, set9 followed by get9 may not return the same values. Since SkMatrix
        maps non-homogeneous coordinates, scaling all nine values produces an equivalent
        transformation, possibly improving precision.

        @param buffer  nine scalar values
    */
    void set9(const SkScalar buffer[9]);

    /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        Also called setIdentity(); use the one that provides better inline
        documentation.
    */
    void reset();

    /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        Also called reset(); use the one that provides better inline
        documentation.
    */
    void setIdentity() { this->reset(); }

    /** Sets SkMatrix to translate by (dx, dy).

        @param dx  horizontal translation
        @param dy  vertical translation
    */
    void setTranslate(SkScalar dx, SkScalar dy);

    /** Sets SkMatrix to translate by (v.fX, v.fY).

        @param v  vector containing horizontal and vertical translation
    */
    void setTranslate(const SkVector& v) { this->setTranslate(v.fX, v.fY); }

    /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py).
        The pivot point is unchanged when mapped with SkMatrix.

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @param px  pivot x
        @param py  pivot y
    */
    void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);

    /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0).

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
    */
    void setScale(SkScalar sx, SkScalar sy);

    /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py).
        The pivot point is unchanged when mapped with SkMatrix.

        Positive degrees rotates clockwise.

        @param degrees  angle of axes relative to upright axes
        @param px       pivot x
        @param py       pivot y
    */
    void setRotate(SkScalar degrees, SkScalar px, SkScalar py);

    /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0).
        Positive degrees rotates clockwise.

        @param degrees  angle of axes relative to upright axes
    */
    void setRotate(SkScalar degrees);

    /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py).
        The pivot point is unchanged when mapped with SkMatrix.

        Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
        Vector length specifies scale.

        @param sinValue  rotation vector x component
        @param cosValue  rotation vector y component
        @param px        pivot x
        @param py        pivot y
    */
    void setSinCos(SkScalar sinValue, SkScalar cosValue,
                   SkScalar px, SkScalar py);

    /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0).

        Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
        Vector length specifies scale.

        @param sinValue  rotation vector x component
        @param cosValue  rotation vector y component
    */
    void setSinCos(SkScalar sinValue, SkScalar cosValue);

    /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form.

        Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative
        to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled
        by vector, then translated by (rsxForm.fTx, rsxForm.fTy).

        @param rsxForm  compressed SkRSXform matrix
        @return         reference to SkMatrix
    */
    SkMatrix& setRSXform(const SkRSXform& rsxForm);

    /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py).
        The pivot point is unchanged when mapped with SkMatrix.

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
        @param px  pivot x
        @param py  pivot y
    */
    void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);

    /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0).

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
    */
    void setSkew(SkScalar kx, SkScalar ky);

    /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this.

        Given:

                | A B C |      | J K L |
            a = | D E F |, b = | M N O |
                | G H I |      | P Q R |

        sets SkMatrix to:

                    | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                    | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param a  SkMatrix on left side of multiply expression
        @param b  SkMatrix on right side of multiply expression
    */
    void setConcat(const SkMatrix& a, const SkMatrix& b);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy).
        This can be thought of as moving the point to be mapped before applying SkMatrix.

        Given:

                     | A B C |               | 1 0 dx |
            Matrix = | D E F |,  T(dx, dy) = | 0 1 dy |
                     | G H I |               | 0 0  1 |

        sets SkMatrix to:

                                 | A B C | | 1 0 dx |   | A B A*dx+B*dy+C |
            Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F |
                                 | G H I | | 0 0  1 |   | G H G*dx+H*dy+I |

        @param dx  x translation before applying SkMatrix
        @param dy  y translation before applying SkMatrix
    */
    void preTranslate(SkScalar dx, SkScalar dy);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
        about pivot point (px, py).
        This can be thought of as scaling about a pivot point before applying SkMatrix.

        Given:

                     | A B C |                       | sx  0 dx |
            Matrix = | D E F |,  S(sx, sy, px, py) = |  0 sy dy |
                     | G H I |                       |  0  0  1 |

        where

            dx = px - sx * px
            dy = py - sy * py

        sets SkMatrix to:

                                         | A B C | | sx  0 dx |   | A*sx B*sy A*dx+B*dy+C |
            Matrix * S(sx, sy, px, py) = | D E F | |  0 sy dy | = | D*sx E*sy D*dx+E*dy+F |
                                         | G H I | |  0  0  1 |   | G*sx H*sy G*dx+H*dy+I |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @param px  pivot x
        @param py  pivot y
    */
    void preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
        about pivot point (0, 0).
        This can be thought of as scaling about the origin before applying SkMatrix.

        Given:

                     | A B C |               | sx  0  0 |
            Matrix = | D E F |,  S(sx, sy) = |  0 sy  0 |
                     | G H I |               |  0  0  1 |

        sets SkMatrix to:

                                 | A B C | | sx  0  0 |   | A*sx B*sy C |
            Matrix * S(sx, sy) = | D E F | |  0 sy  0 | = | D*sx E*sy F |
                                 | G H I | |  0  0  1 |   | G*sx H*sy I |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
    */
    void preScale(SkScalar sx, SkScalar sy);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
        about pivot point (px, py).
        This can be thought of as rotating about a pivot point before applying SkMatrix.

        Positive degrees rotates clockwise.

        Given:

                     | A B C |                        | c -s dx |
            Matrix = | D E F |,  R(degrees, px, py) = | s  c dy |
                     | G H I |                        | 0  0  1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)
            dx =  s * py + (1 - c) * px
            dy = -s * px + (1 - c) * py

        sets SkMatrix to:

                                          | A B C | | c -s dx |   | Ac+Bs -As+Bc A*dx+B*dy+C |
            Matrix * R(degrees, px, py) = | D E F | | s  c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F |
                                          | G H I | | 0  0  1 |   | Gc+Hs -Gs+Hc G*dx+H*dy+I |

        @param degrees  angle of axes relative to upright axes
        @param px       pivot x
        @param py       pivot y
    */
    void preRotate(SkScalar degrees, SkScalar px, SkScalar py);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
        about pivot point (0, 0).
        This can be thought of as rotating about the origin before applying SkMatrix.

        Positive degrees rotates clockwise.

        Given:

                     | A B C |                        | c -s 0 |
            Matrix = | D E F |,  R(degrees, px, py) = | s  c 0 |
                     | G H I |                        | 0  0 1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)

        sets SkMatrix to:

                                          | A B C | | c -s 0 |   | Ac+Bs -As+Bc C |
            Matrix * R(degrees, px, py) = | D E F | | s  c 0 | = | Dc+Es -Ds+Ec F |
                                          | G H I | | 0  0 1 |   | Gc+Hs -Gs+Hc I |

        @param degrees  angle of axes relative to upright axes
    */
    void preRotate(SkScalar degrees);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
        about pivot point (px, py).
        This can be thought of as skewing about a pivot point before applying SkMatrix.

        Given:

                     | A B C |                       |  1 kx dx |
            Matrix = | D E F |,  K(kx, ky, px, py) = | ky  1 dy |
                     | G H I |                       |  0  0  1 |

        where

            dx = -kx * py
            dy = -ky * px

        sets SkMatrix to:

                                         | A B C | |  1 kx dx |   | A+B*ky A*kx+B A*dx+B*dy+C |
            Matrix * K(kx, ky, px, py) = | D E F | | ky  1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F |
                                         | G H I | |  0  0  1 |   | G+H*ky G*kx+H G*dx+H*dy+I |

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
        @param px  pivot x
        @param py  pivot y
    */
    void preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
        about pivot point (0, 0).
        This can be thought of as skewing about the origin before applying SkMatrix.

        Given:

                     | A B C |               |  1 kx 0 |
            Matrix = | D E F |,  K(kx, ky) = | ky  1 0 |
                     | G H I |               |  0  0 1 |

        sets SkMatrix to:

                                 | A B C | |  1 kx 0 |   | A+B*ky A*kx+B C |
            Matrix * K(kx, ky) = | D E F | | ky  1 0 | = | D+E*ky D*kx+E F |
                                 | G H I | |  0  0 1 |   | G+H*ky G*kx+H I |

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
    */
    void preSkew(SkScalar kx, SkScalar ky);

    /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other.
        This can be thought of mapping by other before applying SkMatrix.

        Given:

                     | A B C |          | J K L |
            Matrix = | D E F |, other = | M N O |
                     | G H I |          | P Q R |

        sets SkMatrix to:

                             | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                             | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param other  SkMatrix on right side of multiply expression
    */
    void preConcat(const SkMatrix& other);

    /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix.
        This can be thought of as moving the point to be mapped after applying SkMatrix.

        Given:

                     | J K L |               | 1 0 dx |
            Matrix = | M N O |,  T(dx, dy) = | 0 1 dy |
                     | P Q R |               | 0 0  1 |

        sets SkMatrix to:

                                 | 1 0 dx | | J K L |   | J+dx*P K+dx*Q L+dx*R |
            T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R |
                                 | 0 0  1 | | P Q R |   |      P      Q      R |

        @param dx  x translation after applying SkMatrix
        @param dy  y translation after applying SkMatrix
    */
    void postTranslate(SkScalar dx, SkScalar dy);

    /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
        (px, py), multiplied by SkMatrix.
        This can be thought of as scaling about a pivot point after applying SkMatrix.

        Given:

                     | J K L |                       | sx  0 dx |
            Matrix = | M N O |,  S(sx, sy, px, py) = |  0 sy dy |
                     | P Q R |                       |  0  0  1 |

        where

            dx = px - sx * px
            dy = py - sy * py

        sets SkMatrix to:

                                         | sx  0 dx | | J K L |   | sx*J+dx*P sx*K+dx*Q sx*L+dx+R |
            S(sx, sy, px, py) * Matrix = |  0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R |
                                         |  0  0  1 | | P Q R |   |         P         Q         R |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
        @param px  pivot x
        @param py  pivot y
    */
    void postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);

    /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
        (0, 0), multiplied by SkMatrix.
        This can be thought of as scaling about the origin after applying SkMatrix.

        Given:

                     | J K L |               | sx  0  0 |
            Matrix = | M N O |,  S(sx, sy) = |  0 sy  0 |
                     | P Q R |               |  0  0  1 |

        sets SkMatrix to:

                                 | sx  0  0 | | J K L |   | sx*J sx*K sx*L |
            S(sx, sy) * Matrix = |  0 sy  0 | | M N O | = | sy*M sy*N sy*O |
                                 |  0  0  1 | | P Q R |   |    P    Q    R |

        @param sx  horizontal scale factor
        @param sy  vertical scale factor
    */
    void postScale(SkScalar sx, SkScalar sy);

    /** Sets SkMatrix to SkMatrix constructed from scaling by (1/divx, 1/divy) about pivot point (px, py), multiplied by SkMatrix.

        Returns false if either divx or divy is zero.

        Given:

                     | J K L |                   | sx  0  0 |
            Matrix = | M N O |,  I(divx, divy) = |  0 sy  0 |
                     | P Q R |                   |  0  0  1 |

        where

            sx = 1 / divx
            sy = 1 / divy

        sets SkMatrix to:

                                     | sx  0  0 | | J K L |   | sx*J sx*K sx*L |
            I(divx, divy) * Matrix = |  0 sy  0 | | M N O | = | sy*M sy*N sy*O |
                                     |  0  0  1 | | P Q R |   |    P    Q    R |

        @param divx  integer divisor for inverse scale in x
        @param divy  integer divisor for inverse scale in y
        @return      true on successful scale
    */
    bool postIDiv(int divx, int divy);

    /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
        (px, py), multiplied by SkMatrix.
        This can be thought of as rotating about a pivot point after applying SkMatrix.

        Positive degrees rotates clockwise.

        Given:

                     | J K L |                        | c -s dx |
            Matrix = | M N O |,  R(degrees, px, py) = | s  c dy |
                     | P Q R |                        | 0  0  1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)
            dx =  s * py + (1 - c) * px
            dy = -s * px + (1 - c) * py

        sets SkMatrix to:

                                          |c -s dx| |J K L|   |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R|
            R(degrees, px, py) * Matrix = |s  c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R|
                                          |0  0  1| |P Q R|   |         P          Q          R|

        @param degrees  angle of axes relative to upright axes
        @param px       pivot x
        @param py       pivot y
    */
    void postRotate(SkScalar degrees, SkScalar px, SkScalar py);

    /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
        (0, 0), multiplied by SkMatrix.
        This can be thought of as rotating about the origin after applying SkMatrix.

        Positive degrees rotates clockwise.

        Given:

                     | J K L |                        | c -s 0 |
            Matrix = | M N O |,  R(degrees, px, py) = | s  c 0 |
                     | P Q R |                        | 0  0 1 |

        where

            c  = cos(degrees)
            s  = sin(degrees)

        sets SkMatrix to:

                                          | c -s dx | | J K L |   | cJ-sM cK-sN cL-sO |
            R(degrees, px, py) * Matrix = | s  c dy | | M N O | = | sJ+cM sK+cN sL+cO |
                                          | 0  0  1 | | P Q R |   |     P     Q     R |

        @param degrees  angle of axes relative to upright axes
    */
    void postRotate(SkScalar degrees);

    /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
        (px, py), multiplied by SkMatrix.
        This can be thought of as skewing about a pivot point after applying SkMatrix.

        Given:

                     | J K L |                       |  1 kx dx |
            Matrix = | M N O |,  K(kx, ky, px, py) = | ky  1 dy |
                     | P Q R |                       |  0  0  1 |

        where

            dx = -kx * py
            dy = -ky * px

        sets SkMatrix to:

                                         | 1 kx dx| |J K L|   |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R|
            K(kx, ky, px, py) * Matrix = |ky  1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R|
                                         | 0  0  1| |P Q R|   |          P           Q           R|

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
        @param px  pivot x
        @param py  pivot y
    */
    void postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);

    /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
        (0, 0), multiplied by SkMatrix.
        This can be thought of as skewing about the origin after applying SkMatrix.

        Given:

                     | J K L |               |  1 kx 0 |
            Matrix = | M N O |,  K(kx, ky) = | ky  1 0 |
                     | P Q R |               |  0  0 1 |

        sets SkMatrix to:

                                 |  1 kx 0 | | J K L |   | J+kx*M K+kx*N L+kx*O |
            K(kx, ky) * Matrix = | ky  1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O |
                                 |  0  0 1 | | P Q R |   |      P      Q      R |

        @param kx  horizontal skew factor
        @param ky  vertical skew factor
    */
    void postSkew(SkScalar kx, SkScalar ky);

    /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix.
        This can be thought of mapping by other after applying SkMatrix.

        Given:

                     | J K L |           | A B C |
            Matrix = | M N O |,  other = | D E F |
                     | P Q R |           | G H I |

        sets SkMatrix to:

                             | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                             | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param other  SkMatrix on left side of multiply expression
    */
    void postConcat(const SkMatrix& other);

    /** \enum SkMatrix::ScaleToFit
        ScaleToFit describes how SkMatrix is constructed to map one SkRect to another.
        ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling,
        or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies
        how SkMatrix maps to the side or center of the destination SkRect.
    */
    enum ScaleToFit {
        /** Computes SkMatrix that scales in x and y independently, so that source SkRect is
            mapped to completely fill destination SkRect. The aspect ratio of source SkRect
            may change.
        */
        kFill_ScaleToFit,

        /** Computes SkMatrix that maintains source SkRect aspect ratio, mapping source SkRect
            width or height to destination SkRect. Aligns mapping to left and top edges
            of destination SkRect.
        */
        kStart_ScaleToFit,

        /** Computes SkMatrix that maintains source SkRect aspect ratio, mapping source SkRect
            width or height to destination SkRect. Aligns mapping to center of destination
            SkRect.
        */
        kCenter_ScaleToFit,

        /** Computes SkMatrix that maintains source SkRect aspect ratio, mapping source SkRect
            width or height to destination SkRect. Aligns mapping to right and bottom
            edges of destination SkRect.
        */
        kEnd_ScaleToFit,
    };

    /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether
        mapping completely fills dst or preserves the aspect ratio, and how to align
        src within dst. Returns false if src is empty, and sets SkMatrix to identity.
        Returns true if dst is empty, and sets SkMatrix to:

            | 0 0 0 |
            | 0 0 0 |
            | 0 0 1 |

        @param src  SkRect to map from
        @param dst  SkRect to map to
        @param stf  one of: kFill_ScaleToFit, kStart_ScaleToFit,
                    kCenter_ScaleToFit, kEnd_ScaleToFit
        @return     true if SkMatrix can represent SkRect mapping
    */
    bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);

    /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects
        whether mapping completely fills dst or preserves the aspect ratio, and how to
        align src within dst. Returns the identity SkMatrix if src is empty. If dst is
        empty, returns SkMatrix set to:

            | 0 0 0 |
            | 0 0 0 |
            | 0 0 1 |

        @param src  SkRect to map from
        @param dst  SkRect to map to
        @param stf  one of: kFill_ScaleToFit, kStart_ScaleToFit,
                    kCenter_ScaleToFit, kEnd_ScaleToFit
        @return     SkMatrix mapping src to dst
    */
    static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) {
        SkMatrix m;
        m.setRectToRect(src, dst, stf);
        return m;
    }

    /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less.

        If count is zero, sets SkMatrix to identity and returns true.
        If count is one, sets SkMatrix to translate and returns true.
        If count is two or more, sets SkMatrix to map SkPoint if possible; returns false
        if SkMatrix cannot be constructed. If count is four, SkMatrix may include
        perspective.

        @param src    SkPoint to map from
        @param dst    SkPoint to map to
        @param count  number of SkPoint in src and dst
        @return       true if SkMatrix was constructed successfully
    */
    bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);

    /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted.
        Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix
        maps from destination to source. If SkMatrix can not be inverted, inverse is
        unchanged.

        @param inverse  storage for inverted SkMatrix; may be nullptr
        @return         true if SkMatrix can be inverted
    */
    bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
        // Allow the trivial case to be inlined.
        if (this->isIdentity()) {
            if (inverse) {
                inverse->reset();
            }
            return true;
        }
        return this->invertNonIdentity(inverse);
    }

    /** Fills affine with identity values in column major order.
        Sets affine to:

            | 1 0 0 |
            | 0 1 0 |

        Affine 3x2 matrices in column major order are used by OpenGL and XPS.

        @param affine  storage for 3x2 affine matrix
    */
    static void SetAffineIdentity(SkScalar affine[6]);

    /** Fills affine in column major order. Sets affine to:

            | scale-x  skew-x translate-x |
            | skew-y  scale-y translate-y |

        If SkMatrix contains perspective, returns false and leaves affine unchanged.

        @param affine  storage for 3x2 affine matrix; may be nullptr
        @return        true if SkMatrix does not contain perspective
    */
    bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;

    /** Sets SkMatrix to affine values, passed in column major order. Given affine,
        column, then row, as:

            | scale-x  skew-x translate-x |
            |  skew-y scale-y translate-y |

        SkMatrix is set, row, then column, to:

            | scale-x  skew-x translate-x |
            |  skew-y scale-y translate-y |
            |       0       0           1 |

        @param affine  3x2 affine matrix
    */
    void setAffine(const SkScalar affine[6]);

    /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater
        length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        where

            for (i = 0; i < count; ++i) {
                x = src[i].fX
                y = src[i].fY
            }

        each dst SkPoint is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        src and dst may point to the same storage.

        @param dst    storage for mapped SkPoint
        @param src    SkPoint to transform
        @param count  number of SkPoint to transform
    */
    void mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
        SkASSERT((dst && src && count > 0) || 0 == count);
        // no partial overlap
        SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
        this->getMapPtsProc()(*this, dst, src, count);
    }

    /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying
        each SkPoint by SkMatrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        where

            for (i = 0; i < count; ++i) {
                x = pts[i].fX
                y = pts[i].fY
            }

        each resulting pts SkPoint is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param pts    storage for mapped SkPoint
        @param count  number of SkPoint to transform
    */
    void mapPoints(SkPoint pts[], int count) const {
        this->mapPoints(pts, pts, count);
    }

    /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or
        greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given:

                     | A B C |         | x |
            Matrix = | D E F |,  src = | y |
                     | G H I |         | z |

        each resulting dst SkPoint is computed as:

                           |A B C| |x|
            Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz|
                           |G H I| |z|

        @param dst    storage for mapped SkPoint3 array
        @param src    SkPoint3 array to transform
        @param count  items in SkPoint3 array to transform
    */
    void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const;

    /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        result is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param x       x-coordinate of SkPoint to map
        @param y       y-coordinate of SkPoint to map
        @param result  storage for mapped SkPoint
    */
    void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
        SkASSERT(result);
        this->getMapXYProc()(*this, x, y, result);
    }

    /** Returns SkPoint (x, y) multiplied by SkMatrix. Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        result is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param x  x-coordinate of SkPoint to map
        @param y  y-coordinate of SkPoint to map
        @return   mapped SkPoint
    */
    SkPoint mapXY(SkScalar x, SkScalar y) const {
        SkPoint result;
        this->getMapXYProc()(*this, x, y, &result);
        return result;
    }

    /** Maps src vector array of length count to vector SkPoint array of equal or greater
        length. Vectors are mapped by multiplying each vector by SkMatrix, treating
        SkMatrix translation as zero. Given:

                     | A B 0 |         | x |
            Matrix = | D E 0 |,  src = | y |
                     | G H I |         | 1 |

        where

            for (i = 0; i < count; ++i) {
                x = src[i].fX
                y = src[i].fY
            }

        each dst vector is computed as:

                           |A B 0| |x|                            Ax+By     Dx+Ey
            Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
                           |G H I| |1|                           Gx+Hy+I   Gx+Hy+I

        src and dst may point to the same storage.

        @param dst    storage for mapped vectors
        @param src    vectors to transform
        @param count  number of vectors to transform
    */
    void mapVectors(SkVector dst[], const SkVector src[], int count) const;

    /** Maps vecs vector array of length count in place, multiplying each vector by
        SkMatrix, treating SkMatrix translation as zero. Given:

                     | A B 0 |         | x |
            Matrix = | D E 0 |,  vec = | y |
                     | G H I |         | 1 |

        where

            for (i = 0; i < count; ++i) {
                x = vecs[i].fX
                y = vecs[i].fY
            }

        each result vector is computed as:

                           |A B 0| |x|                            Ax+By     Dx+Ey
            Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
                           |G H I| |1|                           Gx+Hy+I   Gx+Hy+I

        @param vecs   vectors to transform, and storage for mapped vectors
        @param count  number of vectors to transform
    */
    void mapVectors(SkVector vecs[], int count) const {
        this->mapVectors(vecs, vecs, count);
    }

    /** Maps vector (x, y) to result. Vector is mapped by multiplying by SkMatrix,
        treating SkMatrix translation as zero. Given:

                     | A B 0 |         | dx |
            Matrix = | D E 0 |,  vec = | dy |
                     | G H I |         |  1 |

        each result vector is computed as:

                       |A B 0| |dx|                                        A*dx+B*dy     D*dx+E*dy
        Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
                       |G H I| | 1|                                       G*dx+H*dy+I   G*dx+*dHy+I

        @param dx      x-coordinate of vector to map
        @param dy      y-coordinate of vector to map
        @param result  storage for mapped vector
    */
    void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
        SkVector vec = { dx, dy };
        this->mapVectors(result, &vec, 1);
    }

    /** Returns vector (x, y) multiplied by SkMatrix, treating SkMatrix translation as zero.
        Given:

                     | A B 0 |         | dx |
            Matrix = | D E 0 |,  vec = | dy |
                     | G H I |         |  1 |

        each result vector is computed as:

                       |A B 0| |dx|                                        A*dx+B*dy     D*dx+E*dy
        Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
                       |G H I| | 1|                                       G*dx+H*dy+I   G*dx+*dHy+I

        @param dx  x-coordinate of vector to map
        @param dy  y-coordinate of vector to map
        @return    mapped vector
    */
    SkVector mapVector(SkScalar dx, SkScalar dy) const {
        SkVector vec = { dx, dy };
        this->mapVectors(&vec, &vec, 1);
        return vec;
    }

    /** Sets dst to bounds of src corners mapped by SkMatrix.
        Returns true if mapped corners are dst corners.

        Returned value is the same as calling rectStaysRect().

        @param dst  storage for bounds of mapped SkPoint
        @param src  SkRect to map
        @return     true if dst is equivalent to mapped src
    */
    bool mapRect(SkRect* dst, const SkRect& src) const;

    /** Sets rect to bounds of rect corners mapped by SkMatrix.
        Returns true if mapped corners are computed rect corners.

        Returned value is the same as calling rectStaysRect().

        @param rect  rectangle to map, and storage for bounds of mapped corners
        @return      true if result is equivalent to mapped src
    */
    bool mapRect(SkRect* rect) const {
        return this->mapRect(rect, *rect);
    }

    /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each
        rect corner by SkMatrix. rect corner is processed in this order:
        (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom),
        (rect.fLeft, rect.fBottom).

        rect may be empty: rect.fLeft may be greater than or equal to rect.fRight;
        rect.fTop may be greater than or equal to rect.fBottom.

        Given:

                     | A B C |        | x |
            Matrix = | D E F |,  pt = | y |
                     | G H I |        | 1 |

        where pt is initialized from each of (rect.fLeft, rect.fTop),
        (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom),
        each dst SkPoint is computed as:

                          |A B C| |x|                               Ax+By+C   Dx+Ey+F
            Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
                          |G H I| |1|                               Gx+Hy+I   Gx+Hy+I

        @param dst   storage for mapped corner SkPoint
        @param rect  SkRect to map
    */
    void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
        // This could potentially be faster if we only transformed each x and y of the rect once.
        rect.toQuad(dst);
        this->mapPoints(dst, 4);
    }

    /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains
        elements other than scale or translate: asserts if SK_DEBUG is defined;
        otherwise, results are undefined.

        @param dst  storage for bounds of mapped SkPoint
        @param src  SkRect to map
    */
    void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const;

    /** Returns geometric mean radius of ellipse formed by constructing circle of
        size radius, and mapping constructed circle with SkMatrix. The result squared is
        equal to the major axis length times the minor axis length.
        Result is not meaningful if SkMatrix contains perspective elements.

        @param radius  circle size to map
        @return        average mapped radius
    */
    SkScalar mapRadius(SkScalar radius) const;

    /** Returns true if a unit step in x at some y mapped through SkMatrix can be
        represented by a constant vector. Returns true if getType() returns kIdentity_Mask,
        or combinations of: kTranslate_Mask, kScale_Mask, and kAffine_Mask.

        May return true if getType() returns kPerspective_Mask, but only when SkMatrix
        does not include rotation or skewing along the y-axis.

        @return  true if SkMatrix does not have complex perspective
    */
    bool isFixedStepInX() const;

    /** Returns vector representing a unit step in x at y mapped through SkMatrix.
        If isFixedStepInX() is false, returned value is undefined.

        @param y  position of line parallel to x-axis
        @return   vector advance of mapped unit step in x
    */
    SkVector fixedStepInX(SkScalar y) const;

    /** Returns true if SkMatrix equals m, using an efficient comparison.

        Returns false when the sign of zero values is the different; when one
        matrix has positive zero value and the other has negative zero value.

        Returns true even when both SkMatrix contain NaN.

        NaN never equals any value, including itself. To improve performance, NaN values
        are treated as bit patterns that are equal if their bit patterns are equal.

        @param m  SkMatrix to compare
        @return   true if m and SkMatrix are represented by identical bit patterns
    */
    bool cheapEqualTo(const SkMatrix& m) const {
        return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
    }

    /** Compares a and b; returns true if a and b are numerically equal. Returns true
        even if sign of zero values are different. Returns false if either SkMatrix
        contains NaN, even if the other SkMatrix also contains NaN.

        @param a  SkMatrix to compare
        @param b  SkMatrix to compare
        @return   true if SkMatrix a and SkMatrix b are numerically equal
    */
    friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);

    /** Compares a and b; returns true if a and b are not numerically equal. Returns false
        even if sign of zero values are different. Returns true if either SkMatrix
        contains NaN, even if the other SkMatrix also contains NaN.

        @param a  SkMatrix to compare
        @param b  SkMatrix to compare
        @return   true if SkMatrix a and SkMatrix b are numerically not equal
    */
    friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
        return !(a == b);
    }

    /** Writes text representation of SkMatrix to standard output. Floating point values
        are written with limited precision; it may not be possible to reconstruct
        original SkMatrix from output.
    */
    void dump() const;

    /** Creates string representation of SkMatrix. Floating point values
        are written with limited precision; it may not be possible to reconstruct
        original SkMatrix from output.

        @param str  storage for string representation of SkMatrix
    */
    void toString(SkString* str) const;

    /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and
        skewing elements.
        Returns -1 if scale factor overflows or SkMatrix contains perspective.

        @return  minimum scale factor
    */
    SkScalar getMinScale() const;

    /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and
        skewing elements.
        Returns -1 if scale factor overflows or SkMatrix contains perspective.

        @return  maximum scale factor
    */
    SkScalar getMaxScale() const;

    /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the
        maximum scaling factor. Scaling factors are computed by decomposing
        the SkMatrix scaling and skewing elements.

        Returns true if scaleFactors are found; otherwise, returns false and sets
        scaleFactors to undefined values.

        @param scaleFactors  storage for minimum and maximum scale factors
        @return              true if scale factors were computed correctly
    */
    bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const;

    /** Decomposes SkMatrix into scale components and whatever remains. Returns false if
        SkMatrix could not be decomposed.

        Sets scale to portion of SkMatrix that scales in x and y. Sets remaining to SkMatrix
        with x and y scaling factored out. remaining may be passed as nullptr
        to determine if SkMatrix can be decomposed without computing remainder.

        Returns true if scale components are found. scale and remaining are
        unchanged if SkMatrix contains perspective; scale factors are not finite, or
        are nearly zero.

        On success
        Matrix = scale * Remaining

        @param scale      x and y scaling factors; may be nullptr
        @param remaining  SkMatrix without scaling; may be nullptr
        @return           true if scale can be computed
    */
    bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const;

    /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to:

            | 1 0 0 |
            | 0 1 0 |
            | 0 0 1 |

        @return  const identity SkMatrix
    */
    static const SkMatrix& I();

    /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set
        to:

            | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
            | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
            | SK_ScalarMax SK_ScalarMax SK_ScalarMax |

        @return  const invalid SkMatrix
    */
    static const SkMatrix& InvalidMatrix();

    /** Returns SkMatrix a multiplied by SkMatrix b.

        Given:

                | A B C |      | J K L |
            a = | D E F |, b = | M N O |
                | G H I |      | P Q R |

        sets SkMatrix to:

                    | A B C |   | J K L |   | AJ+BM+CP AK+BN+CQ AL+BO+CR |
            a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
                    | G H I |   | P Q R |   | GJ+HM+IP GK+HN+IQ GL+HO+IR |

        @param a  SkMatrix on left side of multiply expression
        @param b  SkMatrix on right side of multiply expression
        @return   SkMatrix computed from a times b
    */
    static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
        SkMatrix result;
        result.setConcat(a, b);
        return result;
    }

    /** Sets internal cache to unknown state. Use to force update after repeated
        modifications to SkMatrix element reference returned by operator[](int index).
    */
    void dirtyMatrixTypeCache() {
        this->setTypeMask(kUnknown_Mask);
    }

    /** Initializes SkMatrix with scale and translate elements.

            | sx  0 tx |
            |  0 sy ty |
            |  0  0  1 |

        @param sx  horizontal scale factor to store
        @param sy  vertical scale factor to store
        @param tx  horizontal translation to store
        @param ty  vertical translation to store
    */
    void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
        fMat[kMScaleX] = sx;
        fMat[kMSkewX]  = 0;
        fMat[kMTransX] = tx;

        fMat[kMSkewY]  = 0;
        fMat[kMScaleY] = sy;
        fMat[kMTransY] = ty;

        fMat[kMPersp0] = 0;
        fMat[kMPersp1] = 0;
        fMat[kMPersp2] = 1;

        unsigned mask = 0;
        if (sx != 1 || sy != 1) {
            mask |= kScale_Mask;
        }
        if (tx || ty) {
            mask |= kTranslate_Mask;
        }
        this->setTypeMask(mask | kRectStaysRect_Mask);
    }

    /** Returns true if all elements of the matrix are finite. Returns false if any
        element is infinity, or NaN.

        @return  true if matrix has only finite elements
    */
    bool isFinite() const { return SkScalarsAreFinite(fMat, 9); }

private:
    enum {
        /** Set if the matrix will map a rectangle to another rectangle. This
            can be true if the matrix is scale-only, or rotates a multiple of
            90 degrees.

            This bit will be set on identity matrices
        */
        kRectStaysRect_Mask = 0x10,

        /** Set if the perspective bit is valid even though the rest of
            the matrix is Unknown.
        */
        kOnlyPerspectiveValid_Mask = 0x40,

        kUnknown_Mask = 0x80,

        kORableMasks =  kTranslate_Mask |
                        kScale_Mask |
                        kAffine_Mask |
                        kPerspective_Mask,

        kAllMasks = kTranslate_Mask |
                    kScale_Mask |
                    kAffine_Mask |
                    kPerspective_Mask |
                    kRectStaysRect_Mask,
    };

    SkScalar         fMat[9];
    mutable uint32_t fTypeMask;

    static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp);

    uint8_t computeTypeMask() const;
    uint8_t computePerspectiveTypeMask() const;

    void setTypeMask(int mask) {
        // allow kUnknown or a valid mask
        SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
                 ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
                 == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
        fTypeMask = SkToU8(mask);
    }

    void orTypeMask(int mask) {
        SkASSERT((mask & kORableMasks) == mask);
        fTypeMask = SkToU8(fTypeMask | mask);
    }

    void clearTypeMask(int mask) {
        // only allow a valid mask
        SkASSERT((mask & kAllMasks) == mask);
        fTypeMask = fTypeMask & ~mask;
    }

    TypeMask getPerspectiveTypeMaskOnly() const {
        if ((fTypeMask & kUnknown_Mask) &&
            !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
            fTypeMask = this->computePerspectiveTypeMask();
        }
        return (TypeMask)(fTypeMask & 0xF);
    }

    /** Returns true if we already know that the matrix is identity;
        false otherwise.
    */
    bool isTriviallyIdentity() const {
        if (fTypeMask & kUnknown_Mask) {
            return false;
        }
        return ((fTypeMask & 0xF) == 0);
    }

    inline void updateTranslateMask() {
        if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
            fTypeMask |= kTranslate_Mask;
        } else {
            fTypeMask &= ~kTranslate_Mask;
        }
    }

    typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
                                 SkPoint* result);

    static MapXYProc GetMapXYProc(TypeMask mask) {
        SkASSERT((mask & ~kAllMasks) == 0);
        return gMapXYProcs[mask & kAllMasks];
    }

    MapXYProc getMapXYProc() const {
        return GetMapXYProc(this->getType());
    }

    typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
                                  const SkPoint src[], int count);

    static MapPtsProc GetMapPtsProc(TypeMask mask) {
        SkASSERT((mask & ~kAllMasks) == 0);
        return gMapPtsProcs[mask & kAllMasks];
    }

    MapPtsProc getMapPtsProc() const {
        return GetMapPtsProc(this->getType());
    }

    bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;

    static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);

    static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);

    static const MapXYProc gMapXYProcs[];

    static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
    static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
                               int count);
    static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);

    static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);

    static const MapPtsProc gMapPtsProcs[];

    // return the number of bytes written, whether or not buffer is null
    size_t writeToMemory(void* buffer) const;
    /**
     * Reads data from the buffer parameter
     *
     * @param buffer Memory to read from
     * @param length Amount of memory available in the buffer
     * @return number of bytes read (must be a multiple of 4) or
     *         0 if there was not enough memory available
     */
    size_t readFromMemory(const void* buffer, size_t length);

    friend class SkPerspIter;
    friend class SkMatrixPriv;
    friend class SkReader32;
    friend class SerializationTest;
};
SK_END_REQUIRE_DENSE

#endif