aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkImageFilter.h
blob: dab46ae716b69ffb76f9adcf726342289ecda4cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkImageFilter_DEFINED
#define SkImageFilter_DEFINED

#include "SkFilterQuality.h"
#include "SkFlattenable.h"
#include "SkMatrix.h"
#include "SkRect.h"
#include "SkTemplates.h"

class SkBitmap;
class SkColorFilter;
class SkBaseDevice;
class SkSurfaceProps;
struct SkIPoint;
class GrFragmentProcessor;
class GrTexture;

/**
 *  Base class for image filters. If one is installed in the paint, then
 *  all drawing occurs as usual, but it is as if the drawing happened into an
 *  offscreen (before the xfermode is applied). This offscreen bitmap will
 *  then be handed to the imagefilter, who in turn creates a new bitmap which
 *  is what will finally be drawn to the device (using the original xfermode).
 */
class SK_API SkImageFilter : public SkFlattenable {
public:
    SK_DECLARE_INST_COUNT(SkImageFilter)

    class CropRect {
    public:
        enum CropEdge {
            kHasLeft_CropEdge   = 0x01,
            kHasTop_CropEdge    = 0x02,
            kHasRight_CropEdge  = 0x04,
            kHasBottom_CropEdge = 0x08,
            kHasAll_CropEdge    = 0x0F,
        };
        CropRect() {}
        explicit CropRect(const SkRect& rect, uint32_t flags = kHasAll_CropEdge) : fRect(rect), fFlags(flags) {}
        uint32_t flags() const { return fFlags; }
        const SkRect& rect() const { return fRect; }
    private:
        SkRect fRect;
        uint32_t fFlags;
    };

    // This cache maps from (filter's unique ID + CTM + clipBounds + src bitmap generation ID) to
    // (result, offset).
    class Cache : public SkRefCnt {
    public:
        struct Key;
        virtual ~Cache() {}
        static Cache* Create(size_t maxBytes);
        static Cache* Get();
        virtual bool get(const Key& key, SkBitmap* result, SkIPoint* offset) const = 0;
        virtual void set(const Key& key, const SkBitmap& result, const SkIPoint& offset) = 0;
    };

    class Context {
    public:
        Context(const SkMatrix& ctm, const SkIRect& clipBounds, Cache* cache) :
            fCTM(ctm), fClipBounds(clipBounds), fCache(cache) {
        }
        const SkMatrix& ctm() const { return fCTM; }
        const SkIRect& clipBounds() const { return fClipBounds; }
        Cache* cache() const { return fCache; }
    private:
        SkMatrix fCTM;
        SkIRect  fClipBounds;
        Cache* fCache;
    };

    class Proxy {
    public:
        virtual ~Proxy() {};

        virtual SkBaseDevice* createDevice(int width, int height) = 0;
        // returns true if the proxy can handle this filter natively
        virtual bool canHandleImageFilter(const SkImageFilter*) = 0;
        // returns true if the proxy handled the filter itself. if this returns
        // false then the filter's code will be called.
        virtual bool filterImage(const SkImageFilter*, const SkBitmap& src,
                                 const Context&,
                                 SkBitmap* result, SkIPoint* offset) = 0;
        virtual const SkSurfaceProps* surfaceProps() const = 0;
    };

    /**
     *  Request a new (result) image to be created from the src image.
     *  If the src has no pixels (isNull()) then the request just wants to
     *  receive the config and width/height of the result.
     *
     *  The matrix is the current matrix on the canvas.
     *
     *  Offset is the amount to translate the resulting image relative to the
     *  src when it is drawn. This is an out-param.
     *
     *  If the result image cannot be created, return false, in which case both
     *  the result and offset parameters will be ignored by the caller.
     */
    bool filterImage(Proxy*, const SkBitmap& src, const Context&,
                     SkBitmap* result, SkIPoint* offset) const;

    /**
     *  Given the src bounds of an image, this returns the bounds of the result
     *  image after the filter has been applied.
     */
    bool filterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const;

    /**
     *  Returns true if the filter can be processed on the GPU.  This is most
     *  often used for multi-pass effects, where intermediate results must be
     *  rendered to textures.  For single-pass effects, use asFragmentProcessor().
     *  The default implementation returns asFragmentProcessor(NULL, NULL, SkMatrix::I(),
     *  SkIRect()).
     */
    virtual bool canFilterImageGPU() const;

    /**
     *  Process this image filter on the GPU.  This is most often used for
     *  multi-pass effects, where intermediate results must be rendered to
     *  textures.  For single-pass effects, use asFragmentProcessor().  src is the
     *  source image for processing, as a texture-backed bitmap.  result is
     *  the destination bitmap, which should contain a texture-backed pixelref
     *  on success.  offset is the amount to translate the resulting image
     *  relative to the src when it is drawn. The default implementation does
     *  single-pass processing using asFragmentProcessor().
     */
    virtual bool filterImageGPU(Proxy*, const SkBitmap& src, const Context&,
                                SkBitmap* result, SkIPoint* offset) const;

    /**
     *  Returns whether this image filter is a color filter and puts the color filter into the
     *  "filterPtr" parameter if it can. Does nothing otherwise.
     *  If this returns false, then the filterPtr is unchanged.
     *  If this returns true, then if filterPtr is not null, it must be set to a ref'd colorfitler
     *  (i.e. it may not be set to NULL).
     */
    bool isColorFilterNode(SkColorFilter** filterPtr) const {
        return this->onIsColorFilterNode(filterPtr);
    }

    // DEPRECATED : use isColorFilterNode() instead
    bool asColorFilter(SkColorFilter** filterPtr) const {
        return this->isColorFilterNode(filterPtr);
    }

    /**
     *  Returns true (and optionally returns a ref'd filter) if this imagefilter can be completely
     *  replaced by the returned colorfilter. i.e. the two effects will affect drawing in the
     *  same way.
     */
    bool asAColorFilter(SkColorFilter** filterPtr) const {
        return this->countInputs() > 0 &&
               NULL == this->getInput(0) &&
               this->isColorFilterNode(filterPtr);
    }

    /**
     *  Returns the number of inputs this filter will accept (some inputs can
     *  be NULL).
     */
    int countInputs() const { return fInputCount; }

    /**
     *  Returns the input filter at a given index, or NULL if no input is
     *  connected.  The indices used are filter-specific.
     */
    SkImageFilter* getInput(int i) const {
        SkASSERT(i < fInputCount);
        return fInputs[i];
    }

    /**
     *  Returns whether any edges of the crop rect have been set. The crop
     *  rect is set at construction time, and determines which pixels from the
     *  input image will be processed. The size of the crop rect should be
     *  used as the size of the destination image. The origin of this rect
     *  should be used to offset access to the input images, and should also
     *  be added to the "offset" parameter in onFilterImage and
     *  filterImageGPU(). (The latter ensures that the resulting buffer is
     *  drawn in the correct location.)
     */
    bool cropRectIsSet() const { return fCropRect.flags() != 0x0; }

    // Default impl returns union of all input bounds.
    virtual void computeFastBounds(const SkRect&, SkRect*) const;

    /**
     * Create an SkMatrixImageFilter, which transforms its input by the given matrix.
     */
    static SkImageFilter* CreateMatrixFilter(const SkMatrix& matrix,
                                             SkFilterQuality,
                                             SkImageFilter* input = NULL);

#if SK_SUPPORT_GPU
    /**
     * Wrap the given texture in a texture-backed SkBitmap.
     */
    static void WrapTexture(GrTexture* texture, int width, int height, SkBitmap* result);

    /**
     * Recursively evaluate this filter on the GPU. If the filter has no GPU
     * implementation, it will be processed in software and uploaded to the GPU.
     */
    bool getInputResultGPU(SkImageFilter::Proxy* proxy, const SkBitmap& src, const Context&,
                           SkBitmap* result, SkIPoint* offset) const;
#endif

    SK_TO_STRING_PUREVIRT()
    SK_DEFINE_FLATTENABLE_TYPE(SkImageFilter)

protected:
    class Common {
    public:
        Common() {}
        ~Common();

        /**
         *  Attempt to unflatten the cropRect and the expected number of input filters.
         *  If any number of input filters is valid, pass -1.
         *  If this fails (i.e. corrupt buffer or contents) then return false and common will
         *  be left uninitialized.
         *  If this returns true, then inputCount() is the number of found input filters, each
         *  of which may be NULL or a valid imagefilter.
         */
        bool unflatten(SkReadBuffer&, int expectedInputs);

        const CropRect& cropRect() const { return fCropRect; }
        int             inputCount() const { return fInputs.count(); }
        SkImageFilter** inputs() const { return fInputs.get(); }

        SkImageFilter*  getInput(int index) const { return fInputs[index]; }

        // If the caller wants a copy of the inputs, call this and it will transfer ownership
        // of the unflattened input filters to the caller. This is just a short-cut for copying
        // the inputs, calling ref() on each, and then waiting for Common's destructor to call
        // unref() on each.
        void detachInputs(SkImageFilter** inputs);

    private:
        CropRect fCropRect;
        // most filters accept at most 2 input-filters
        SkAutoSTArray<2, SkImageFilter*> fInputs;

        void allocInputs(int count);
    };

    SkImageFilter(int inputCount, SkImageFilter** inputs, const CropRect* cropRect = NULL);

    virtual ~SkImageFilter();

    /**
     *  Constructs a new SkImageFilter read from an SkReadBuffer object.
     *
     *  @param inputCount    The exact number of inputs expected for this SkImageFilter object.
     *                       -1 can be used if the filter accepts any number of inputs.
     *  @param rb            SkReadBuffer object from which the SkImageFilter is read.
     */
    explicit SkImageFilter(int inputCount, SkReadBuffer& rb);

    void flatten(SkWriteBuffer&) const override;

    /**
     *  This is the virtual which should be overridden by the derived class
     *  to perform image filtering.
     *
     *  src is the original primitive bitmap. If the filter has a connected
     *  input, it should recurse on that input and use that in place of src.
     *
     *  The matrix is the current matrix on the canvas.
     *
     *  Offset is the amount to translate the resulting image relative to the
     *  src when it is drawn. This is an out-param.
     *
     *  If the result image cannot be created, this should false, in which
     *  case both the result and offset parameters will be ignored by the
     *  caller.
     */
    virtual bool onFilterImage(Proxy*, const SkBitmap& src, const Context&,
                               SkBitmap* result, SkIPoint* offset) const;
    // Given the bounds of the destination rect to be filled in device
    // coordinates (first parameter), and the CTM, compute (conservatively)
    // which rect of the source image would be required (third parameter).
    // Used for clipping and temp-buffer allocations, so the result need not
    // be exact, but should never be smaller than the real answer. The default
    // implementation recursively unions all input bounds, or returns false if
    // no inputs.
    virtual bool onFilterBounds(const SkIRect&, const SkMatrix&, SkIRect*) const;

    /**
     *  Return true (and return a ref'd colorfilter) if this node in the DAG is just a
     *  colorfilter w/o CropRect constraints.
     */
    virtual bool onIsColorFilterNode(SkColorFilter** /*filterPtr*/) const {
        return false;
    }

    /** Computes source bounds as the src bitmap bounds offset by srcOffset.
     *  Apply the transformed crop rect to the bounds if any of the
     *  corresponding edge flags are set. Intersects the result against the
     *  context's clipBounds, and returns the result in "bounds". If there is
     *  no intersection, returns false and leaves "bounds" unchanged.
     */
    bool applyCropRect(const Context&, const SkBitmap& src, const SkIPoint& srcOffset,
                       SkIRect* bounds) const;

    /** Same as the above call, except that if the resulting crop rect is not
     *  entirely contained by the source bitmap's bounds, it creates a new
     *  bitmap in "result" and pads the edges with transparent black. In that
     *  case, the srcOffset is modified to be the same as the bounds, since no
     *  further adjustment is needed by the caller. This version should only
     *  be used by filters which are not capable of processing a smaller
     *  source bitmap into a larger destination.
     */
    bool applyCropRect(const Context&, Proxy* proxy, const SkBitmap& src, SkIPoint* srcOffset,
                       SkIRect* bounds, SkBitmap* result) const;

    /**
     *  Returns true if the filter can be expressed a single-pass
     *  GrProcessor, used to process this filter on the GPU, or false if
     *  not.
     *
     *  If effect is non-NULL, a new GrProcessor instance is stored
     *  in it.  The caller assumes ownership of the stage, and it is up to the
     *  caller to unref it.
     *
     *  The effect can assume its vertexCoords space maps 1-to-1 with texels
     *  in the texture.  "matrix" is a transformation to apply to filter
     *  parameters before they are used in the effect. Note that this function
     *  will be called with (NULL, NULL, SkMatrix::I()) to query for support,
     *  so returning "true" indicates support for all possible matrices.
     */
    virtual bool asFragmentProcessor(GrFragmentProcessor**, GrTexture*, const SkMatrix&,
                                     const SkIRect& bounds) const;

private:
    bool usesSrcInput() const { return fUsesSrcInput; }

    typedef SkFlattenable INHERITED;
    int fInputCount;
    SkImageFilter** fInputs;
    bool fUsesSrcInput;
    CropRect fCropRect;
    uint32_t fUniqueID; // Globally unique
};

/**
 *  Helper to unflatten the common data, and return NULL if we fail.
 */
#define SK_IMAGEFILTER_UNFLATTEN_COMMON(localVar, expectedCount)    \
    Common localVar;                                                \
    do {                                                            \
        if (!localVar.unflatten(buffer, expectedCount)) {           \
            return NULL;                                            \
        }                                                           \
    } while (0)

#endif