1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkFloatingPoint_DEFINED
#define SkFloatingPoint_DEFINED
#include "SkTypes.h"
#include <math.h>
#include <float.h>
// For _POSIX_VERSION
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <unistd.h>
#endif
#include "SkFloatBits.h"
// C++98 cmath std::pow seems to be the earliest portable way to get float pow.
// However, on Linux including cmath undefines isfinite.
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
static inline float sk_float_pow(float base, float exp) {
return powf(base, exp);
}
static inline float sk_float_copysign(float x, float y) {
// c++11 contains a 'float copysign(float, float)' function in <cmath>.
// clang-cl reports __cplusplus for clang, not the __cplusplus vc++ version _MSC_VER would report.
#if (defined(_MSC_VER) && defined(__clang__))
# define SK_BUILD_WITH_CLANG_CL 1
#else
# define SK_BUILD_WITH_CLANG_CL 0
#endif
#if (!SK_BUILD_WITH_CLANG_CL && __cplusplus >= 201103L) || (_MSC_VER >= 1800)
return copysign(x, y);
// Posix has demanded 'float copysignf(float, float)' (from C99) since Issue 6.
#elif defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L
return copysignf(x, y);
// Visual studio prior to 13 only has 'double _copysign(double, double)'.
#elif defined(_MSC_VER)
return (float)_copysign(x, y);
// Otherwise convert to bits and extract sign.
#else
int32_t xbits = SkFloat2Bits(x);
int32_t ybits = SkFloat2Bits(y);
return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000));
#endif
}
#ifdef SK_BUILD_FOR_WINCE
#define sk_float_sqrt(x) (float)::sqrt(x)
#define sk_float_sin(x) (float)::sin(x)
#define sk_float_cos(x) (float)::cos(x)
#define sk_float_tan(x) (float)::tan(x)
#define sk_float_acos(x) (float)::acos(x)
#define sk_float_asin(x) (float)::asin(x)
#define sk_float_atan2(y,x) (float)::atan2(y,x)
#define sk_float_abs(x) (float)::fabs(x)
#define sk_float_mod(x,y) (float)::fmod(x,y)
#define sk_float_exp(x) (float)::exp(x)
#define sk_float_log(x) (float)::log(x)
#define sk_float_floor(x) (float)::floor(x)
#define sk_float_ceil(x) (float)::ceil(x)
#else
#define sk_float_sqrt(x) sqrtf(x)
#define sk_float_sin(x) sinf(x)
#define sk_float_cos(x) cosf(x)
#define sk_float_tan(x) tanf(x)
#define sk_float_floor(x) floorf(x)
#define sk_float_ceil(x) ceilf(x)
#ifdef SK_BUILD_FOR_MAC
#define sk_float_acos(x) static_cast<float>(acos(x))
#define sk_float_asin(x) static_cast<float>(asin(x))
#else
#define sk_float_acos(x) acosf(x)
#define sk_float_asin(x) asinf(x)
#endif
#define sk_float_atan2(y,x) atan2f(y,x)
#define sk_float_abs(x) fabsf(x)
#define sk_float_mod(x,y) fmodf(x,y)
#define sk_float_exp(x) expf(x)
#define sk_float_log(x) logf(x)
#endif
#ifdef SK_BUILD_FOR_WIN
#define sk_float_isfinite(x) _finite(x)
#define sk_float_isnan(x) _isnan(x)
static inline int sk_float_isinf(float x) {
int32_t bits = SkFloat2Bits(x);
return (bits << 1) == (0xFF << 24);
}
#else
#define sk_float_isfinite(x) isfinite(x)
#define sk_float_isnan(x) isnan(x)
#define sk_float_isinf(x) isinf(x)
#endif
#define sk_double_isnan(a) sk_float_isnan(a)
#ifdef SK_USE_FLOATBITS
#define sk_float_floor2int(x) SkFloatToIntFloor(x)
#define sk_float_round2int(x) SkFloatToIntRound(x)
#define sk_float_ceil2int(x) SkFloatToIntCeil(x)
#else
#define sk_float_floor2int(x) (int)sk_float_floor(x)
#define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f)
#define sk_float_ceil2int(x) (int)sk_float_ceil(x)
#endif
#define sk_double_floor(x) floor(x)
#define sk_double_round(x) floor((x) + 0.5)
#define sk_double_ceil(x) ceil(x)
#define sk_double_floor2int(x) (int)floor(x)
#define sk_double_round2int(x) (int)floor((x) + 0.5f)
#define sk_double_ceil2int(x) (int)ceil(x)
extern const uint32_t gIEEENotANumber;
extern const uint32_t gIEEEInfinity;
extern const uint32_t gIEEENegativeInfinity;
#define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber))
#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity))
#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity))
#if defined(__SSE__)
#include <xmmintrin.h>
#elif defined(SK_ARM_HAS_NEON)
#include <arm_neon.h>
#endif
// Fast, approximate inverse square root.
// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
static inline float sk_float_rsqrt(const float x) {
// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
// it at compile time. This is going to be too fast to productively hide behind a function pointer.
//
// We do one step of Newton's method to refine the estimates in the NEON and null paths. No
// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
#if defined(__SSE__)
float result;
_mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x)));
return result;
#elif defined(SK_ARM_HAS_NEON)
// Get initial estimate.
const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
float32x2_t estimate = vrsqrte_f32(xx);
// One step of Newton's method to refine.
const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
#else
// Get initial estimate.
int i = *SkTCast<int*>(&x);
i = 0x5f3759df - (i>>1);
float estimate = *SkTCast<float*>(&i);
// One step of Newton's method to refine.
const float estimate_sq = estimate*estimate;
estimate *= (1.5f-0.5f*x*estimate_sq);
return estimate;
#endif
}
#endif
|