aboutsummaryrefslogtreecommitdiffhomepage
path: root/gm/convexpaths.cpp
blob: b869887a97fcbeeb9a194a153a535e7d4fffcee7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "gm.h"
#include "SkRandom.h"
#include "SkTArray.h"

class SkDoOnce : SkNoncopyable {
public:
    SkDoOnce() { fDidOnce = false; }

    bool needToDo() const { return !fDidOnce; }
    bool alreadyDone() const { return fDidOnce; }
    void accomplished() {
        SkASSERT(!fDidOnce);
        fDidOnce = true;
    }

private:
    bool fDidOnce;
};

namespace skiagm {

class ConvexPathsGM : public GM {
    SkDoOnce fOnce;
public:
    ConvexPathsGM() {
        this->setBGColor(0xFF000000);
    }

protected:
    virtual uint32_t onGetFlags() const SK_OVERRIDE {
        return kSkipTiled_Flag;
    }

    virtual SkString onShortName() {
        return SkString("convexpaths");
    }


    virtual SkISize onISize() {
        return SkISize::Make(1200, 1100);
    }

    void makePaths() {
        if (fOnce.alreadyDone()) {
            return;
        }
        fOnce.accomplished();

        fPaths.push_back().moveTo(0, 0);
        fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
                             0, 100 * SK_Scalar1);
        fPaths.back().lineTo(0, 0);

        fPaths.push_back().moveTo(0, 50 * SK_Scalar1);
        fPaths.back().quadTo(50 * SK_Scalar1, 0,
                             100 * SK_Scalar1, 50 * SK_Scalar1);
        fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1,
                             0, 50 * SK_Scalar1);

        fPaths.push_back().addRect(0, 0,
                                   100 * SK_Scalar1, 100 * SK_Scalar1,
                                   SkPath::kCW_Direction);

        fPaths.push_back().addRect(0, 0,
                                   100 * SK_Scalar1, 100 * SK_Scalar1,
                                   SkPath::kCCW_Direction);

        fPaths.push_back().addCircle(50  * SK_Scalar1, 50  * SK_Scalar1,
                                     50  * SK_Scalar1, SkPath::kCW_Direction);


        fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
                                                    50 * SK_Scalar1,
                                                    100 * SK_Scalar1),
                                   SkPath::kCW_Direction);

        fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
                                                    100 * SK_Scalar1,
                                                    5 * SK_Scalar1),
                                   SkPath::kCCW_Direction);

        fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0,
                                                    SK_Scalar1,
                                                    100 * SK_Scalar1),
                                                    SkPath::kCCW_Direction);

        fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0,
                                                         SK_Scalar1 * 100,
                                                         SK_Scalar1 * 100),
                                        40 * SK_Scalar1, 20 * SK_Scalar1,
                                        SkPath::kCW_Direction);

        // large number of points
        enum {
            kLength = 100,
            kPtsPerSide = (1 << 12),
        };
        fPaths.push_back().moveTo(0, 0);
        for (int i = 1; i < kPtsPerSide; ++i) { // skip the first point due to moveTo.
            fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, 0);
        }
        for (int i = 0; i < kPtsPerSide; ++i) {
            fPaths.back().lineTo(kLength, kLength * SkIntToScalar(i) / kPtsPerSide);
        }
        for (int i = kPtsPerSide; i > 0; --i) {
            fPaths.back().lineTo(kLength * SkIntToScalar(i) / kPtsPerSide, kLength);
        }
        for (int i = kPtsPerSide; i > 0; --i) {
            fPaths.back().lineTo(0, kLength * SkIntToScalar(i) / kPtsPerSide);
        }

        // shallow diagonals
        fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1);
        fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1);
        fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1);

        fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0,
                                                  50 * SK_Scalar1,
                                                  100 * SK_Scalar1),
                                                  25 * SK_Scalar1,  130 * SK_Scalar1, false);

        // cubics
        fPaths.push_back().cubicTo( 1 * SK_Scalar1,  1 * SK_Scalar1,
                                   10 * SK_Scalar1,  90 * SK_Scalar1,
                                    0 * SK_Scalar1, 100 * SK_Scalar1);
        fPaths.push_back().cubicTo(100 * SK_Scalar1,  50 * SK_Scalar1,
                                    20 * SK_Scalar1, 100 * SK_Scalar1,
                                     0 * SK_Scalar1,   0 * SK_Scalar1);

        // path that has a cubic with a repeated first control point and
        // a repeated last control point.
        fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
        fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1,
                              10 * SK_Scalar1, 0,
                              20 * SK_Scalar1, 0);
        fPaths.back().lineTo(40 * SK_Scalar1, 0);
        fPaths.back().cubicTo(40 * SK_Scalar1, 0,
                              50 * SK_Scalar1, 0,
                              50 * SK_Scalar1, 10 * SK_Scalar1);

        // path that has two cubics with repeated middle control points.
        fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10);
        fPaths.back().cubicTo(10 * SK_Scalar1, 0,
                              10 * SK_Scalar1, 0,
                              20 * SK_Scalar1, 0);
        fPaths.back().lineTo(40 * SK_Scalar1, 0);
        fPaths.back().cubicTo(50 * SK_Scalar1, 0,
                              50 * SK_Scalar1, 0,
                              50 * SK_Scalar1, 10 * SK_Scalar1);

        // cubic where last three points are almost a line
        fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8);
        fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8,
                              1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8,
                              1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8);

        // flat cubic where the at end point tangents both point outward.
        fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
        fPaths.back().cubicTo(0, SK_Scalar1,
                              30 * SK_Scalar1, SK_Scalar1,
                              20 * SK_Scalar1, 0);

        // flat cubic where initial tangent is in, end tangent out
        fPaths.push_back().moveTo(0, 0 * SK_Scalar1);
        fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1,
                              30 * SK_Scalar1, SK_Scalar1,
                              20 * SK_Scalar1, 0);

        // flat cubic where initial tangent is out, end tangent in
        fPaths.push_back().moveTo(10 * SK_Scalar1, 0);
        fPaths.back().cubicTo(0, SK_Scalar1,
                              20 * SK_Scalar1, SK_Scalar1,
                              30 * SK_Scalar1, 0);

        // triangle where one edge is a degenerate quad
        fPaths.push_back().moveTo(8.59375f, 45 * SK_Scalar1);
        fPaths.back().quadTo(16.9921875f,   45 * SK_Scalar1,
                             31.25f,        45 * SK_Scalar1);
        fPaths.back().lineTo(100 * SK_Scalar1,              100 * SK_Scalar1);
        fPaths.back().lineTo(8.59375f,      45 * SK_Scalar1);

        // triangle where one edge is a quad with a repeated point
        fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
        fPaths.back().lineTo(50 * SK_Scalar1, 0);
        fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1);

        // triangle where one edge is a cubic with a 2x repeated point
        fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
        fPaths.back().lineTo(50 * SK_Scalar1, 0);
        fPaths.back().cubicTo(50 * SK_Scalar1, 0,
                              50 * SK_Scalar1, 50 * SK_Scalar1,
                              50 * SK_Scalar1, 50 * SK_Scalar1);

        // triangle where one edge is a quad with a nearly repeated point
        fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
        fPaths.back().lineTo(50 * SK_Scalar1, 0);
        fPaths.back().quadTo(50 * SK_Scalar1, 49.95f,
                             50 * SK_Scalar1, 50 * SK_Scalar1);

        // triangle where one edge is a cubic with a 3x nearly repeated point
        fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
        fPaths.back().lineTo(50 * SK_Scalar1, 0);
        fPaths.back().cubicTo(50 * SK_Scalar1, 49.95f,
                              50 * SK_Scalar1, 49.97f,
                              50 * SK_Scalar1, 50 * SK_Scalar1);

        // triangle where there is a point degenerate cubic at one corner
        fPaths.push_back().moveTo(0, 25 * SK_Scalar1);
        fPaths.back().lineTo(50 * SK_Scalar1, 0);
        fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);
        fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
                              50 * SK_Scalar1, 50 * SK_Scalar1,
                              50 * SK_Scalar1, 50 * SK_Scalar1);

        // point line
        fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
        fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1);

        // point quad
        fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
        fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
                             50 * SK_Scalar1, 50 * SK_Scalar1);

        // point cubic
        fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1);
        fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1,
                              50 * SK_Scalar1, 50 * SK_Scalar1,
                              50 * SK_Scalar1, 50 * SK_Scalar1);

        // moveTo only paths
        fPaths.push_back().moveTo(0, 0);
        fPaths.back().moveTo(0, 0);
        fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
        fPaths.back().moveTo(SK_Scalar1, SK_Scalar1);
        fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1);

        fPaths.push_back().moveTo(0, 0);
        fPaths.back().moveTo(0, 0);

        // line degenerate
        fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1);
        fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0);
        fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1,
                                  50 * SK_Scalar1, 50 * SK_Scalar1);
        fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1,
                                  100 * SK_Scalar1, 100 * SK_Scalar1);
        fPaths.push_back().cubicTo(0, 0,
                                   0, 0,
                                   100 * SK_Scalar1, 100 * SK_Scalar1);

        // small circle. This is listed last so that it has device coords far
        // from the origin (small area relative to x,y values).
        fPaths.push_back().addCircle(0, 0, 1.2f);
    }

    virtual void onDraw(SkCanvas* canvas) {
        this->makePaths();

    SkPaint paint;
    paint.setAntiAlias(true);
    SkLCGRandom rand;
    canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1);

    // As we've added more paths this has gotten pretty big. Scale the whole thing down.
    canvas->scale(2 * SK_Scalar1 / 3, 2 * SK_Scalar1 / 3);

    for (int i = 0; i < fPaths.count(); ++i) {
        canvas->save();
        // position the path, and make it at off-integer coords.
        canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 10,
                          SK_Scalar1 * 200 * (i / 5) + 9 * SK_Scalar1 / 10);
        SkColor color = rand.nextU();
        color |= 0xff000000;
        paint.setColor(color);
#if 0 // This hitting on 32bit Linux builds for some paths. Temporarily disabling while it is
      // debugged.
        SkASSERT(fPaths[i].isConvex());
#endif
        canvas->drawPath(fPaths[i], paint);
        canvas->restore();
    }
    }

private:
    typedef GM INHERITED;
    SkTArray<SkPath> fPaths;
};

//////////////////////////////////////////////////////////////////////////////

static GM* MyFactory(void*) { return new ConvexPathsGM; }
static GMRegistry reg(MyFactory);

}