aboutsummaryrefslogtreecommitdiffhomepage
path: root/gm/beziereffects.cpp
blob: 3de47d3be23f8e2a999f73d28737097c083edf0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

// This test only works with the GPU backend.

#include "gm.h"

#if SK_SUPPORT_GPU

#include "GrContext.h"
#include "GrPathUtils.h"
#include "GrTest.h"
#include "SkColorPriv.h"
#include "SkDevice.h"
#include "SkGeometry.h"

#include "effects/GrBezierEffect.h"

// Position & KLM line eq values. These are the vertex attributes for Bezier curves. The last value
// of the Vec4f is ignored.
namespace {
extern const GrVertexAttrib kAttribs[] = {
    {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
    {kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}
};
}

static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) {
    return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]);
}

namespace skiagm {
/**
 * This GM directly exercises effects that draw Bezier curves in the GPU backend.
 */
class BezierCubicEffects : public GM {
public:
    BezierCubicEffects() {
        this->setBGColor(0xFFFFFFFF);
    }

protected:
    virtual SkString onShortName() SK_OVERRIDE {
        return SkString("bezier_cubic_effects");
    }

    virtual SkISize onISize() SK_OVERRIDE {
        return SkISize::Make(800, 800);
    }

    virtual uint32_t onGetFlags() const SK_OVERRIDE {
        // This is a GPU-specific GM.
        return kGPUOnly_Flag;
    }


    virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
        GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
        if (NULL == rt) {
            return;
        }
        GrContext* context = rt->getContext();
        if (NULL == context) {
            return;
        }

        struct Vertex {
            SkPoint fPosition;
            float   fKLM[4]; // The last value is ignored. The effect expects a vec4f.
        };

        static const int kNumCubics = 15;
        SkRandom rand;

        // Mult by 3 for each edge effect type
        int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3)));
        int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols);
        SkScalar w = SkIntToScalar(rt->width()) / numCols;
        SkScalar h = SkIntToScalar(rt->height()) / numRows;
        int row = 0;
        int col = 0;

        for (int i = 0; i < kNumCubics; ++i) {
            SkPoint baseControlPts[] = {
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
            };
            for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
                SkAutoTUnref<GrGeometryProcessor> gp;
                {   // scope to contain GrTestTarget
                    GrTestTarget tt;
                    context->getTestTarget(&tt);
                    if (NULL == tt.target()) {
                        continue;
                    }
                    GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
                    gp.reset(GrCubicEffect::Create(et, *tt.target()->caps()));
                    if (!gp) {
                        continue;
                    }
                }

                SkScalar x = SkScalarMul(col, w);
                SkScalar y = SkScalarMul(row, h);
                SkPoint controlPts[] = {
                    {x + baseControlPts[0].fX, y + baseControlPts[0].fY},
                    {x + baseControlPts[1].fX, y + baseControlPts[1].fY},
                    {x + baseControlPts[2].fX, y + baseControlPts[2].fY},
                    {x + baseControlPts[3].fX, y + baseControlPts[3].fY}
                };
                SkPoint chopped[10];
                SkScalar klmEqs[9];
                SkScalar klmSigns[3];
                int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts,
                                                                   chopped,
                                                                   klmEqs,
                                                                   klmSigns);

                SkPaint ctrlPtPaint;
                ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
                for (int i = 0; i < 4; ++i) {
                    canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
                }

                SkPaint polyPaint;
                polyPaint.setColor(0xffA0A0A0);
                polyPaint.setStrokeWidth(0);
                polyPaint.setStyle(SkPaint::kStroke_Style);
                canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint);

                SkPaint choppedPtPaint;
                choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);

                for (int c = 0; c < cnt; ++c) {
                    SkPoint* pts = chopped + 3 * c;

                    for (int i = 0; i < 4; ++i) {
                        canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
                    }

                    SkRect bounds;
                    bounds.set(pts, 4);

                    SkPaint boundsPaint;
                    boundsPaint.setColor(0xff808080);
                    boundsPaint.setStrokeWidth(0);
                    boundsPaint.setStyle(SkPaint::kStroke_Style);
                    canvas->drawRect(bounds, boundsPaint);

                    GrTestTarget tt;
                    context->getTestTarget(&tt);
                    SkASSERT(tt.target());

                    GrDrawState ds;
                    ds.setVertexAttribs<kAttribs>(2, sizeof(Vertex));

                    GrDrawTarget::AutoReleaseGeometry geo(tt.target(), 4, ds.getVertexStride(), 0);
                    Vertex* verts = reinterpret_cast<Vertex*>(geo.vertices());

                    verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
                                                  bounds.fRight, bounds.fBottom,
                                                  sizeof(Vertex));
                    for (int v = 0; v < 4; ++v) {
                        verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, klmSigns[c]);
                        verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, klmSigns[c]);
                        verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f);
                    }

                    ds.setGeometryProcessor(gp);
                    ds.setRenderTarget(rt);
                    ds.setColor(0xff000000);

                    tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
                    tt.target()->drawIndexed(&ds, kTriangleFan_GrPrimitiveType, 0, 0, 4, 6);
                }
                ++col;
                if (numCols == col) {
                    col = 0;
                    ++row;
                }
            }
        }
    }

private:
    typedef GM INHERITED;
};

//////////////////////////////////////////////////////////////////////////////

/**
 * This GM directly exercises effects that draw Bezier curves in the GPU backend.
 */
class BezierConicEffects : public GM {
public:
    BezierConicEffects() {
        this->setBGColor(0xFFFFFFFF);
    }

protected:
    virtual SkString onShortName() SK_OVERRIDE {
        return SkString("bezier_conic_effects");
    }

    virtual SkISize onISize() SK_OVERRIDE {
        return SkISize::Make(800, 800);
    }

    virtual uint32_t onGetFlags() const SK_OVERRIDE {
        // This is a GPU-specific GM.
        return kGPUOnly_Flag;
    }


    virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
        GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
        if (NULL == rt) {
            return;
        }
        GrContext* context = rt->getContext();
        if (NULL == context) {
            return;
        }

        struct Vertex {
            SkPoint fPosition;
            float   fKLM[4]; // The last value is ignored. The effect expects a vec4f.
        };

        static const int kNumConics = 10;
        SkRandom rand;

        // Mult by 3 for each edge effect type
        int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3)));
        int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols);
        SkScalar w = SkIntToScalar(rt->width()) / numCols;
        SkScalar h = SkIntToScalar(rt->height()) / numRows;
        int row = 0;
        int col = 0;

        for (int i = 0; i < kNumConics; ++i) {
            SkPoint baseControlPts[] = {
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
            };
            SkScalar weight = rand.nextRangeF(0.f, 2.f);
            for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
                SkAutoTUnref<GrGeometryProcessor> gp;
                {   // scope to contain GrTestTarget
                    GrTestTarget tt;
                    context->getTestTarget(&tt);
                    if (NULL == tt.target()) {
                        continue;
                    }
                    GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
                    gp.reset(GrConicEffect::Create(et, *tt.target()->caps()));
                    if (!gp) {
                        continue;
                    }
                }

                SkScalar x = SkScalarMul(col, w);
                SkScalar y = SkScalarMul(row, h);
                SkPoint controlPts[] = {
                    {x + baseControlPts[0].fX, y + baseControlPts[0].fY},
                    {x + baseControlPts[1].fX, y + baseControlPts[1].fY},
                    {x + baseControlPts[2].fX, y + baseControlPts[2].fY}
                };
                SkConic dst[4];
                SkScalar klmEqs[9];
                int cnt = chop_conic(controlPts, dst, weight);
                GrPathUtils::getConicKLM(controlPts, weight, klmEqs);

                SkPaint ctrlPtPaint;
                ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
                for (int i = 0; i < 3; ++i) {
                    canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
                }

                SkPaint polyPaint;
                polyPaint.setColor(0xffA0A0A0);
                polyPaint.setStrokeWidth(0);
                polyPaint.setStyle(SkPaint::kStroke_Style);
                canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);

                SkPaint choppedPtPaint;
                choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);

                for (int c = 0; c < cnt; ++c) {
                    SkPoint* pts = dst[c].fPts;
                    for (int i = 0; i < 3; ++i) {
                        canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
                    }

                    SkRect bounds;
                    //SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}};
                    //bounds.set(bPts, 2);
                    bounds.set(pts, 3);

                    SkPaint boundsPaint;
                    boundsPaint.setColor(0xff808080);
                    boundsPaint.setStrokeWidth(0);
                    boundsPaint.setStyle(SkPaint::kStroke_Style);
                    canvas->drawRect(bounds, boundsPaint);

                    GrTestTarget tt;
                    context->getTestTarget(&tt);
                    SkASSERT(tt.target());

                    GrDrawState ds;
                    ds.setVertexAttribs<kAttribs>(2, sizeof(Vertex));

                    GrDrawTarget::AutoReleaseGeometry geo(tt.target(), 4, ds.getVertexStride(), 0);
                    Vertex* verts = reinterpret_cast<Vertex*>(geo.vertices());

                    verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
                                                  bounds.fRight, bounds.fBottom,
                                                  sizeof(Vertex));
                    for (int v = 0; v < 4; ++v) {
                        verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, 1.f);
                        verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, 1.f);
                        verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f);
                    }

                    ds.setGeometryProcessor(gp);
                    ds.setRenderTarget(rt);
                    ds.setColor(0xff000000);

                    tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
                    tt.target()->drawIndexed(&ds, kTriangleFan_GrPrimitiveType, 0, 0, 4, 6);
                }
                ++col;
                if (numCols == col) {
                    col = 0;
                    ++row;
                }
            }
        }
    }

private:
    // Uses the max curvature function for quads to estimate
    // where to chop the conic. If the max curvature is not
    // found along the curve segment it will return 1 and
    // dst[0] is the original conic. If it returns 2 the dst[0]
    // and dst[1] are the two new conics.
    int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
        SkScalar t = SkFindQuadMaxCurvature(src);
        if (t == 0) {
            if (dst) {
                dst[0].set(src, weight);
            }
            return 1;
        } else {
            if (dst) {
                SkConic conic;
                conic.set(src, weight);
                conic.chopAt(t, dst);
            }
            return 2;
        }
    }

    // Calls split_conic on the entire conic and then once more on each subsection.
    // Most cases will result in either 1 conic (chop point is not within t range)
    // or 3 points (split once and then one subsection is split again).
    int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
        SkConic dstTemp[2];
        int conicCnt = split_conic(src, dstTemp, weight);
        if (2 == conicCnt) {
            int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
            conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
        } else {
            dst[0] = dstTemp[0];
        }
        return conicCnt;
    }

    typedef GM INHERITED;
};

//////////////////////////////////////////////////////////////////////////////
/**
 * This GM directly exercises effects that draw Bezier quad curves in the GPU backend.
 */
class BezierQuadEffects : public GM {
public:
    BezierQuadEffects() {
        this->setBGColor(0xFFFFFFFF);
    }

protected:
    virtual SkString onShortName() SK_OVERRIDE {
        return SkString("bezier_quad_effects");
    }

    virtual SkISize onISize() SK_OVERRIDE {
        return SkISize::Make(800, 800);
    }

    virtual uint32_t onGetFlags() const SK_OVERRIDE {
        // This is a GPU-specific GM.
        return kGPUOnly_Flag;
    }


    virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
        GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
        if (NULL == rt) {
            return;
        }
        GrContext* context = rt->getContext();
        if (NULL == context) {
            return;
        }

        struct Vertex {
            SkPoint fPosition;
            float   fUV[4]; // The last two values are ignored. The effect expects a vec4f.
        };

        static const int kNumQuads = 5;
        SkRandom rand;

        int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3)));
        int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols);
        SkScalar w = SkIntToScalar(rt->width()) / numCols;
        SkScalar h = SkIntToScalar(rt->height()) / numRows;
        int row = 0;
        int col = 0;

        for (int i = 0; i < kNumQuads; ++i) {
            SkPoint baseControlPts[] = {
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
                {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
            };
            for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) {
                SkAutoTUnref<GrGeometryProcessor> gp;
                {   // scope to contain GrTestTarget
                    GrTestTarget tt;
                    context->getTestTarget(&tt);
                    if (NULL == tt.target()) {
                        continue;
                    }
                    GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType;
                    gp.reset(GrQuadEffect::Create(et, *tt.target()->caps()));
                    if (!gp) {
                        continue;
                    }
                }

                SkScalar x = SkScalarMul(col, w);
                SkScalar y = SkScalarMul(row, h);
                SkPoint controlPts[] = {
                    {x + baseControlPts[0].fX, y + baseControlPts[0].fY},
                    {x + baseControlPts[1].fX, y + baseControlPts[1].fY},
                    {x + baseControlPts[2].fX, y + baseControlPts[2].fY}
                };
                SkPoint chopped[5];
                int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped);

                SkPaint ctrlPtPaint;
                ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
                for (int i = 0; i < 3; ++i) {
                    canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
                }

                SkPaint polyPaint;
                polyPaint.setColor(0xffA0A0A0);
                polyPaint.setStrokeWidth(0);
                polyPaint.setStyle(SkPaint::kStroke_Style);
                canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);

                SkPaint choppedPtPaint;
                choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);

                for (int c = 0; c < cnt; ++c) {
                    SkPoint* pts = chopped + 2 * c;

                    for (int i = 0; i < 3; ++i) {
                        canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
                    }

                    SkRect bounds;
                    bounds.set(pts, 3);

                    SkPaint boundsPaint;
                    boundsPaint.setColor(0xff808080);
                    boundsPaint.setStrokeWidth(0);
                    boundsPaint.setStyle(SkPaint::kStroke_Style);
                    canvas->drawRect(bounds, boundsPaint);

                    GrTestTarget tt;
                    context->getTestTarget(&tt);
                    SkASSERT(tt.target());

                    GrDrawState ds;
                    ds.setVertexAttribs<kAttribs>(2, sizeof(Vertex));

                    GrDrawTarget::AutoReleaseGeometry geo(tt.target(), 4, ds.getVertexStride(), 0);
                    Vertex* verts = reinterpret_cast<Vertex*>(geo.vertices());

                    verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
                                                  bounds.fRight, bounds.fBottom,
                                                  sizeof(Vertex));

                    GrPathUtils::QuadUVMatrix DevToUV(pts);
                    DevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts);

                    ds.setGeometryProcessor(gp);
                    ds.setRenderTarget(rt);
                    ds.setColor(0xff000000);

                    tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
                    tt.target()->drawIndexed(&ds, kTriangles_GrPrimitiveType, 0, 0, 4, 6);
                }
                ++col;
                if (numCols == col) {
                    col = 0;
                    ++row;
                }
            }
        }
    }

private:
    typedef GM INHERITED;
};

DEF_GM( return SkNEW(BezierCubicEffects); )
DEF_GM( return SkNEW(BezierConicEffects); )
DEF_GM( return SkNEW(BezierQuadEffects); )

}

#endif