aboutsummaryrefslogtreecommitdiffhomepage
path: root/fuzz/fuzz.cpp
blob: d879f298b26c28dc5f167d50054b3903cd7228f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "Fuzz.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkCommandLineFlags.h"
#include "SkData.h"
#include "SkForceLinking.h"
#include "SkImage.h"
#include "SkImageEncoder.h"
#include "SkMallocPixelRef.h"
#include "SkPicture.h"
#include "SkStream.h"

#include <signal.h>
#include <stdlib.h>

__SK_FORCE_IMAGE_DECODER_LINKING;

DEFINE_string2(bytes, b, "", "A path to a file.  This can be the fuzz bytes or a binary to parse.");
DEFINE_string2(name, n, "", "If --type is 'api', fuzz the API with this name.");

DEFINE_string2(type, t, "api", "How to interpret --bytes, either 'image', 'skp', or 'api'.");
DEFINE_string2(dump, d, "", "If not empty, dump 'image' or 'skp' types as a PNG with this name.");

static int printUsage(const char* name) {
    SkDebugf("Usage: %s -t <type> -b <path/to/file> [-n api-to-fuzz]\n", name);
    return 1;
}

static int fuzz_api(SkData*);
static int fuzz_img(SkData*);
static int fuzz_skp(SkData*);

int main(int argc, char** argv) {
    SkCommandLineFlags::Parse(argc, argv);

    const char* path = FLAGS_bytes.isEmpty() ? argv[0] : FLAGS_bytes[0];
    SkAutoTUnref<SkData> bytes(SkData::NewFromFileName(path));
    if (!bytes) {
        SkDebugf("Could not read %s\n", path);
        return 2;
    }

    if (!FLAGS_type.isEmpty()) {
        switch (FLAGS_type[0][0]) {
            case 'a': return fuzz_api(bytes);
            case 'i': return fuzz_img(bytes);
            case 's': return fuzz_skp(bytes);
        }
    }
    return printUsage(argv[0]);
}

int fuzz_api(SkData* bytes) {
    const char* name = FLAGS_name.isEmpty() ? "" : FLAGS_name[0];

    for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) {
        auto fuzzable = r->factory();
        if (0 == strcmp(name, fuzzable.name)) {
            SkDebugf("Fuzzing %s...\n", fuzzable.name);
            Fuzz fuzz(bytes);
            fuzzable.fn(&fuzz);
            return 0;
        }
    }

    SkDebugf("When using --type api, please choose an API to fuzz with --name/-n:\n");
    for (auto r = SkTRegistry<Fuzzable>::Head(); r; r = r->next()) {
        auto fuzzable = r->factory();
        SkDebugf("\t%s\n", fuzzable.name);
    }
    return 1;
}

static void dump_png(SkBitmap bitmap) {
    if (!FLAGS_dump.isEmpty()) {
        SkImageEncoder::EncodeFile(FLAGS_dump[0], bitmap, SkImageEncoder::kPNG_Type, 100);
        SkDebugf("Dumped to %s\n", FLAGS_dump[0]);
    }
}

int fuzz_img(SkData* bytes) {
    SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(bytes));
    if (nullptr == codec.get()) {
        SkDebugf("Couldn't create codec.");
        return 3;
    }

    SkImageInfo decodeInfo = codec->getInfo();
    // Construct a color table for the decode if necessary
    SkAutoTUnref<SkColorTable> colorTable(nullptr);
    SkPMColor* colorPtr = nullptr;
    int* colorCountPtr = nullptr;
    int maxColors = 256;
    if (kIndex_8_SkColorType == decodeInfo.colorType()) {
        SkPMColor colors[256];
        colorTable.reset(new SkColorTable(colors, maxColors));
        colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
        colorCountPtr = &maxColors;
    }

    SkBitmap bitmap;
    SkMallocPixelRef::ZeroedPRFactory zeroFactory;
    SkCodec::Options options;
    options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;

    if (!bitmap.tryAllocPixels(decodeInfo, &zeroFactory, nullptr)) {
        SkDebugf("Could not allocate memory.  Image might be too large (%d x %d)",
                    decodeInfo.width(), decodeInfo.height());
        return 4;
    }

    switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options,
            colorPtr, colorCountPtr)) {
        case SkCodec::kSuccess:
            SkDebugf("Success!\n");
            break;
        case SkCodec::kIncompleteInput:
            SkDebugf("Partial Success\n");
            break;
        case SkCodec::kInvalidConversion:
            SkDebugf("Incompatible colortype conversion");
            return 5;
        default:
            // Everything else is considered a failure.
            SkDebugf("Couldn't getPixels.");
            return 6;
    }

    dump_png(bitmap);
    return 0;
}

int fuzz_skp(SkData* bytes) {
    SkMemoryStream stream(bytes);
    SkDebugf("Decoding\n");
    SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(&stream));
    if (!pic) {
        SkDebugf("Couldn't decode as a picture.\n");
        return 3;
    }
    SkDebugf("Rendering\n");
    SkBitmap bitmap;
    if (!FLAGS_dump.isEmpty()) {
        SkIRect size = pic->cullRect().roundOut();
        bitmap.allocN32Pixels(size.width(), size.height());
    }
    SkCanvas canvas(bitmap);
    canvas.drawPicture(pic);
    SkDebugf("Decoded and rendered an SkPicture!\n");
    dump_png(bitmap);
    return 0;
}

Fuzz::Fuzz(SkData* bytes) : fBytes(SkSafeRef(bytes)), fNextByte(0) {}

void Fuzz::signalBug   () { raise(SIGSEGV); }
void Fuzz::signalBoring() { exit(0); }

template <typename T>
T Fuzz::nextT() {
    if (fNextByte + sizeof(T) > fBytes->size()) {
        this->signalBoring();
    }

    T val;
    memcpy(&val, fBytes->bytes() + fNextByte, sizeof(T));
    fNextByte += sizeof(T);
    return val;
}

uint8_t  Fuzz::nextB() { return this->nextT<uint8_t >(); }
uint32_t Fuzz::nextU() { return this->nextT<uint32_t>(); }
float    Fuzz::nextF() { return this->nextT<float   >(); }