1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Forth.h"
#include "ForthParser.h"
#include "SkTDArray.h"
#include "SkString.h"
#include "SkTDStack.h"
ForthEngine::ForthEngine(ForthOutput* output) : fOutput(output) {
size_t size = 32 * sizeof(intptr_t);
fStackBase = reinterpret_cast<intptr_t*>(sk_malloc_throw(size));
fStackStop = fStackBase + size/sizeof(intptr_t);
fStackCurr = fStackStop;
}
ForthEngine::~ForthEngine() {
sk_free(fStackBase);
}
void ForthEngine::sendOutput(const char text[]) {
if (fOutput) {
fOutput->show(text);
} else {
SkDebugf("%s", text);
}
}
void ForthEngine::push(intptr_t value) {
if (fStackCurr > fStackBase) {
SkASSERT(fStackCurr <= fStackStop && fStackCurr > fStackBase);
*--fStackCurr = value;
} else {
this->signal_error("overflow");
}
}
intptr_t ForthEngine::peek(size_t index) const {
SkASSERT(fStackCurr < fStackStop && fStackCurr >= fStackBase);
if (fStackCurr + index < fStackStop) {
return fStackCurr[index];
} else {
this->signal_error("peek out of range");
return 0x80000001;
}
}
void ForthEngine::setTop(intptr_t value) {
if (fStackCurr < fStackStop) {
SkASSERT(fStackCurr < fStackStop && fStackCurr >= fStackBase);
*fStackCurr = value;
} else {
this->signal_error("underflow");
}
}
intptr_t ForthEngine::pop() {
if (fStackCurr < fStackStop) {
SkASSERT(fStackCurr < fStackStop && fStackCurr >= fStackBase);
return *fStackCurr++;
} else {
this->signal_error("underflow");
return 0x80000001;
}
}
///////////////////////////////////////////////////////////////////////////////
void ForthWord::call(ForthCallBlock* block) {
ForthEngine engine(NULL);
// setup the initial stack with the callers input data
if (block) {
// walk the array backwards, so that the top of the stack is data[0]
for (size_t i = 0; i < block->in_count; i++) {
engine.push(block->in_data[i]);
}
}
// now invoke the word
this->exec(&engine);
// now copy back the stack into the caller's output data
if (block) {
size_t n = engine.depth();
block->out_depth = n;
if (n > block->out_count) {
n = block->out_count;
}
for (size_t i = 0; i < n; i++) {
block->out_data[i] = engine.peek(i);
}
}
}
///////////////////////////////////////////////////////////////////////////////
/*
reading an initial 32bit value from the code stream:
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx00
Those last two bits are always 0 for a word, so we set those bits for other
opcodes
00 -- execute this word
01 -- push (value & ~3) on the data stack
10 -- push value >> 2 on the data stack (sign extended)
11 -- switch (value >>> 2) for Code
*/
class FCode {
public:
enum {
kCodeShift = 2,
kCodeMask = 7,
kCodeDataShift = 5
};
static unsigned GetCode(intptr_t c) {
return ((uint32_t)c >> kCodeShift) & kCodeMask;
}
static unsigned GetCodeData(intptr_t c) {
return (uint32_t)c >> kCodeDataShift;
}
enum Bits {
kWord_Bits = 0, // must be zero for function address
kDataClear2_Bits = 1,
kDataShift2_Bits = 2,
kCodeShift2_Bits = 3
};
enum Code {
kPushInt_Code, // for data that needs more than 30 bits
kIF_Code,
kELSE_Code,
kDone_Code
};
static unsigned MakeCode(Code code) {
return (code << kCodeShift) | kCodeShift2_Bits;
}
void appendInt(int32_t);
void appendWord(ForthWord*);
void appendIF();
bool appendELSE();
bool appendTHEN();
void done();
intptr_t* detach() {
this->done();
return fData.detach();
}
intptr_t* begin() {
this->done();
return fData.begin();
}
static void Exec(const intptr_t*, ForthEngine*);
private:
SkTDArray<intptr_t> fData;
SkTDStack<size_t> fIfStack;
};
void FCode::appendInt(int32_t value) {
if ((value & 3) == 0) {
*fData.append() = value | kDataClear2_Bits;
} else if ((value << 2 >> 2) == value) {
*fData.append() = (value << 2) | kDataShift2_Bits;
} else {
intptr_t* p = fData.append(2);
*p++ = (kPushInt_Code << 2) | kCodeShift2_Bits;
*p++ = value;
}
}
void FCode::appendWord(ForthWord* word) {
SkASSERT((reinterpret_cast<intptr_t>(word) & 3) == 0);
*fData.append() = reinterpret_cast<intptr_t>(word);
}
void FCode::appendIF() {
size_t ifIndex = fData.count();
fIfStack.push(ifIndex);
*fData.append() = MakeCode(kIF_Code);
}
bool FCode::appendELSE() {
if (fIfStack.empty()) {
return false;
}
size_t elseIndex = fData.count();
*fData.append() = MakeCode(kELSE_Code);
size_t ifIndex = fIfStack.top();
// record the offset in the data part of the if-code
fData[ifIndex] |= (elseIndex - ifIndex) << kCodeDataShift;
// now reuse this IfStack entry to track the else
fIfStack.top() = elseIndex;
return true;
}
bool FCode::appendTHEN() {
if (fIfStack.empty()) {
return false;
}
// this is either an IF or an ELSE
size_t index = fIfStack.top();
// record the offset in the data part of the code
fData[index] |= (fData.count() - index - 1) << kCodeDataShift;
fIfStack.pop();
return true;
}
void FCode::done() {
*fData.append() = (kDone_Code << 2) | kCodeShift2_Bits;
}
void FCode::Exec(const intptr_t* curr, ForthEngine* engine) {
for (;;) {
intptr_t c = *curr++;
switch (c & 3) {
case kWord_Bits:
reinterpret_cast<ForthWord*>(c)->exec(engine);
break;
case kDataClear2_Bits:
engine->push(c & ~3);
break;
case kDataShift2_Bits:
engine->push(c >> 2);
break;
case kCodeShift2_Bits:
switch (GetCode(c)) {
case kPushInt_Code:
engine->push(*curr++);
break;
case kIF_Code:
if (!engine->pop()) {
// takes us past the ELSE or THEN
curr += GetCodeData(c);
}
break;
case kELSE_Code:
// takes us past the THEN
curr += GetCodeData(c);
break;
case kDone_Code:
return;
}
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
class CustomWord : public ForthWord {
public:
// we assume ownership of code[]
CustomWord(intptr_t code[]) : fCode(code) {}
virtual ~CustomWord() { sk_free(fCode); }
virtual void exec(ForthEngine* engine) {
FCode::Exec(fCode, engine);
}
private:
intptr_t* fCode;
};
///////////////////////////////////////////////////////////////////////////////
ForthParser::ForthParser() : fDict(4096) {
this->addStdWords();
}
ForthParser::~ForthParser() {
SkTDict<ForthWord*>::Iter iter(fDict);
ForthWord* word;
while (iter.next(&word)) {
delete word;
}
}
static const char* parse_error(const char msg[]) {
SkDebugf("-- parser error: %s\n", msg);
return NULL;
}
/** returns true if c is whitespace, including null
*/
static bool is_ws(int c) {
return c <= ' ';
}
static const char* parse_token(const char** text, size_t* len) {
const char* s = *text;
while (is_ws(*s)) {
if (0 == *s) {
return NULL;
}
s++;
}
const char* token = s++;
while (!is_ws(*s)) {
s++;
}
*text = s;
*len = s - token;
return token;
}
static bool is_digit(int c) { return (unsigned)(c - '0') <= 9; }
static int hex_val(int c) {
if (is_digit(c)) {
return c - '0';
} else {
if (c <= 'Z') {
return 10 + c - 'A';
} else {
return 10 + c - 'a';
}
}
}
static bool parse_num(const char str[], size_t len, int32_t* numBits) {
if (1 == len && !is_digit(*str)) {
return false;
}
const char* start = str;
int32_t num = 0;
bool neg = false;
if (*str == '-') {
neg = true;
str += 1;
} else if (*str == '#') {
str++;
while (str - start < len) {
num = num*16 + hex_val(*str);
str += 1;
}
*numBits = num;
return true;
}
while (is_digit(*str)) {
num = 10*num + *str - '0';
str += 1;
}
SkASSERT(str - start <= len);
if (str - start == len) {
if (neg) {
num = -num;
}
*numBits = num;
return true;
}
// if we're not done with the token then the next char must be a decimal
if (*str != '.') {
return false;
}
str += 1;
float x = num;
float denom = 1;
while (str - start < len && is_digit(*str)) {
x = 10*x + *str - '0';
denom *= 10;
str += 1;
}
x /= denom;
if (str - start == len) {
if (neg) {
x = -x;
}
*numBits = f2i_bits(x);
return true;
}
return false;
}
static const char* parse_comment(const char text[]) {
SkASSERT(*text == '(');
while (')' != *++text) {
if (0 == *text) {
return NULL;
}
}
return text + 1; // skip past the closing ')'
}
const char* ForthParser::parse(const char text[], FCode* code) {
for (;;) {
size_t len;
const char* token = parse_token(&text, &len);
if (NULL == token) {
break;
}
if (1 == len) {
if ('(' == *token) {
text = parse_comment(token);
if (NULL == text) {
return NULL;
}
continue;
}
if (';' == *token) {
break;
}
if (':' == *token) {
token = parse_token(&text, &len);
if (NULL == token) {
return parse_error("missing name after ':'");
}
FCode subCode;
text = this->parse(text, &subCode);
if (NULL == text) {
return NULL;
}
this->add(token, len, new CustomWord(subCode.detach()));
continue;
}
}
int32_t num;
if (parse_num(token, len, &num)) {
// note that num is just the bit representation of the float
code->appendInt(num);
} else if (2 == len && memcmp(token, "IF", 2) == 0) {
code->appendIF();
} else if (4 == len && memcmp(token, "ELSE", 4) == 0) {
if (!code->appendELSE()) {
return parse_error("ELSE with no matching IF");
}
} else if (4 == len && memcmp(token, "THEN", 4) == 0) {
if (!code->appendTHEN()) {
return parse_error("THEN with no matching IF");
}
} else{
ForthWord* word = this->find(token, len);
if (NULL == word) {
SkString str(token, len);
str.prepend("unknown word ");
return parse_error(str.c_str());
}
code->appendWord(word);
}
}
return text;
}
///////////////////////////////////////////////////////////////////////////////
class ForthEnv::Impl {
public:
ForthParser fParser;
FCode fBuilder;
};
ForthEnv::ForthEnv() {
fImpl = new Impl;
}
ForthEnv::~ForthEnv() {
delete fImpl;
}
void ForthEnv::addWord(const char name[], ForthWord* word) {
fImpl->fParser.addWord(name, word);
}
void ForthEnv::parse(const char text[]) {
fImpl->fParser.parse(text, &fImpl->fBuilder);
}
ForthWord* ForthEnv::findWord(const char name[]) {
return fImpl->fParser.find(name, strlen(name));
}
void ForthEnv::run(ForthOutput* output) {
ForthEngine engine(output);
FCode::Exec(fImpl->fBuilder.begin(), &engine);
}
#if 0
void ForthEnv::run(const char text[], ForthOutput* output) {
FCode builder;
if (fImpl->fParser.parse(text, &builder)) {
ForthEngine engine(output);
FCode::Exec(builder.begin(), &engine);
}
}
#endif
|