1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkottyProperties.h"
#include "SkColor.h"
#include "SkottyPriv.h"
#include "SkPath.h"
#include "SkSGPath.h"
#include "SkSGRect.h"
#include "SkSGTransform.h"
#include <cmath>
namespace skotty {
namespace {
using PointArray = SkSTArray<64, SkPoint, true>;
bool ParsePoints(const Json::Value& v, PointArray* pts) {
if (!v.isArray()) {
return false;
}
for (Json::ArrayIndex i = 0; i < v.size(); ++i) {
const auto& pt = v[i];
if (!pt.isArray() || pt.size() != 2 ||
!pt[0].isConvertibleTo(Json::realValue) ||
!pt[1].isConvertibleTo(Json::realValue)) {
return false;
}
pts->push_back(SkPoint::Make(ParseScalar(pt[0], 0), ParseScalar(pt[1], 0)));
}
return true;
}
} // namespace
bool ScalarValue::Parse(const Json::Value& v, ScalarValue* scalar) {
// Some files appear to wrap keyframes in arrays for no reason.
if (v.isArray() && v.size() == 1) {
return Parse(v[0], scalar);
}
if (v.isNull() || !v.isConvertibleTo(Json::realValue))
return false;
scalar->fVal = ParseScalar(v, 0);
return true;
}
bool VectorValue::Parse(const Json::Value& v, VectorValue* vec) {
SkASSERT(vec->fVals.empty());
if (!v.isArray())
return false;
for (Json::ArrayIndex i = 0; i < v.size(); ++i) {
const auto& el = v[i];
if (el.isNull() || !el.isConvertibleTo(Json::realValue))
return false;
vec->fVals.emplace_back(ParseScalar(el, 0));
}
return true;
}
bool ShapeValue::Parse(const Json::Value& v, ShapeValue* shape) {
PointArray inPts, // Cubic Bezier "in" control points, relative to vertices.
outPts, // Cubic Bezier "out" control points, relative to vertices.
verts; // Cubic Bezier vertices.
// Some files appear to wrap keyframes in arrays for no reason.
if (v.isArray() && v.size() == 1) {
return Parse(v[0], shape);
}
if (!v.isObject() ||
!ParsePoints(v["i"], &inPts) ||
!ParsePoints(v["o"], &outPts) ||
!ParsePoints(v["v"], &verts) ||
inPts.count() != outPts.count() ||
inPts.count() != verts.count()) {
return false;
}
SkASSERT(shape->fPath.isEmpty());
if (!verts.empty()) {
shape->fPath.moveTo(verts.front());
}
const auto& addCubic = [&](int from, int to) {
shape->fPath.cubicTo(verts[from] + outPts[from],
verts[to] + inPts[to],
verts[to]);
};
for (int i = 1; i < verts.count(); ++i) {
addCubic(i - 1, i);
}
if (!verts.empty() && ParseBool(v["c"], false)) {
addCubic(verts.count() - 1, 0);
shape->fPath.close();
}
return true;
}
template <>
SkColor VectorValue::as<SkColor>() const {
// best effort to turn this into a color
const auto r = fVals.count() > 0 ? fVals[0].as<SkScalar>() : 0,
g = fVals.count() > 1 ? fVals[1].as<SkScalar>() : 0,
b = fVals.count() > 2 ? fVals[2].as<SkScalar>() : 0,
a = fVals.count() > 3 ? fVals[3].as<SkScalar>() : 1;
return SkColorSetARGB(SkTPin<SkScalar>(a, 0, 1) * 255,
SkTPin<SkScalar>(r, 0, 1) * 255,
SkTPin<SkScalar>(g, 0, 1) * 255,
SkTPin<SkScalar>(b, 0, 1) * 255);
}
template <>
SkPoint VectorValue::as<SkPoint>() const {
// best effort to turn this into a point
const auto x = fVals.count() > 0 ? fVals[0].as<SkScalar>() : 0,
y = fVals.count() > 1 ? fVals[1].as<SkScalar>() : 0;
return SkPoint::Make(x, y);
}
template <>
SkSize VectorValue::as<SkSize>() const {
const auto pt = this->as<SkPoint>();
return SkSize::Make(pt.x(), pt.y());
}
template <>
std::vector<SkScalar> VectorValue::as<std::vector<SkScalar>>() const {
std::vector<SkScalar> vec;
vec.reserve(fVals.count());
for (const auto& val : fVals) {
vec.push_back(val);
}
return vec;
}
template <>
SkPath ShapeValue::as<SkPath>() const {
return fPath;
}
CompositeRRect::CompositeRRect(sk_sp<sksg::RRect> wrapped_node)
: fRRectNode(std::move(wrapped_node)) {}
void CompositeRRect::apply() {
// BM "position" == "center position"
auto rr = SkRRect::MakeRectXY(SkRect::MakeXYWH(fPosition.x() - fSize.width() / 2,
fPosition.y() - fSize.height() / 2,
fSize.width(), fSize.height()),
fRadius.width(),
fRadius.height());
fRRectNode->setRRect(rr);
}
CompositeTransform::CompositeTransform(sk_sp<sksg::Matrix> matrix)
: fMatrixNode(std::move(matrix)) {}
void CompositeTransform::apply() {
SkMatrix t = SkMatrix::MakeTrans(-fAnchorPoint.x(), -fAnchorPoint.y());
t.postScale(fScale.x() / 100, fScale.y() / 100); // 100% based
t.postRotate(fRotation);
t.postTranslate(fPosition.x(), fPosition.y());
// TODO: skew
fMatrixNode->setMatrix(t);
}
CompositePolyStar::CompositePolyStar(sk_sp<sksg::Path> wrapped_node, Type t)
: fPathNode(std::move(wrapped_node))
, fType(t) {}
void CompositePolyStar::apply() {
const auto count = SkScalarTruncToInt(fPointCount);
const auto arc = SK_ScalarPI * 2 / count;
const auto pt_on_circle = [](const SkPoint& c, SkScalar r, SkScalar a) {
return SkPoint::Make(c.x() + r * std::cos(a),
c.y() + r * std::sin(a));
};
// TODO: inner/outer "roundness"?
SkPath poly;
auto angle = SkDegreesToRadians(fRotation);
poly.moveTo(pt_on_circle(fPosition, fOuterRadius, angle));
for (int i = 0; i < count; ++i) {
if (fType == Type::kStar) {
poly.lineTo(pt_on_circle(fPosition, fInnerRadius, angle + arc * 0.5f));
}
angle += arc;
poly.lineTo(pt_on_circle(fPosition, fOuterRadius, angle));
}
poly.close();
fPathNode->setPath(poly);
}
} // namespace skotty
|